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Lecture 3

Algebra of conformal Killing vector fields

Definition 1. Let (M", g;;(Z¥) be a Riemannian manifold. Vector field U(Z) is called a
Killing vector field, if (Lzg)i; = 0.

Definition 2. Let M™ be a manifold equipped with a conformal structure, g;;(Z) be a
Riemannin metric representing the conformal class of M™. Vector field U(Z) is called a
conformal Killing vector field, if (Lzg)ij = ANZ)g;(Z) for some scalar function \(Z).

It is easy to check that Definition 2 is correct. Assume that we have two different
metrics g;;(Z), gi;(¥) representing the same conformal class:

Gij(Z) = a(@)g;;(7), a(Z) eR, a(z) > 0.

Then
(L59)ij (%) = Li(a(Z)gi;(F)) = Ly(T) gi5(Z) + a(Z) Lgi;(¥) =
~ Loa(@) gu(@) + a(@N@g(7) = 2 05() + @@ (D @) =
= 2@ (7).
where Loa(?)
AZ) = NE) + (%)

From the formula for the Lie derivative it follows immediately that:
Theorem 1. V(%) is a generator of an infinitesimal conformal transformation, if

dgi; O ov®
R ~Jaj + 7 Gia = MZ)gij.
v ox™ + ang it 6xﬂg (%)g3s

Let me recall, that the situation with conformal maps is completely different for n = 2
and n > 3.

1) Let n = 2. Then we can treat R* as C'. Let U be an open subset U C C', f(2)
be a locally invertible map U — C!. Then this map is conformal iff f(z) is either
holomorphic or antiholomorphic. Holomorphic maps preserve the orientation,
antiholomorphic maps reverse the orientation. The space of such maps is infinite-
dimensional.

The situation changes if we consider global conformal transformations.

Theorem 2. Let S? = CP! be the Riemann sphere. Then the group of globally
defined invertible conformal maps coincides with the 2-dimensional Mdbius group.

2) For n > 3 the following statement takes place:
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Theorem 3. Let M",n > 3 be a manifold equipped with a conformal structure,
U C M™. Then the space of conformal maps U — M™ is finite dimensional and
its dimension is not higher than the dimension of the Mobius group.

A special case of this theorem is known as Liouville theorem.

Theorem 4. Let M™ = R", and conformal structure is generated by the standard
Buclidean metric g;;(¥) = 0;;. Then any conformal map U — R", where U C R"
coincides with the restriction of some Mdbius map R™ — R™ to U.

Proof of Liouville theorem can be found in the book “Modern geometry” by
Dubrovin, Novikov, Fomenko.

We do not provide a proof of these Theorems in our course. But to explain it, we proof
an infinitesimal version of the Liouville theorem for R3. As we explained above, a vector
field ¥(Z) generates a one-parametric family of conformal maps iff ¥(Z) is conformal
Killing, i.e.

for some real-valued function A(Z).

Theorem 5. Let U C R3 be an open subset of R3 equipped with conformal structure
generated by the standard Euclidean metric g(Z);j = 0;;. Then the algebra of conformal
Killing vector fields coincides with the Lie algebra of the Mdbius group.

Remark 1. In fact, this Theorem 1is true for any n > 3, and our proof works for any
n > 3 after minor modifications. But to avoid unnecessary technical complications we
consider in our lectures only the case n = 3.

Proof. Calculating the Lie derivative for ¢(Z);; = ¢;; we immediately obtain

ovt o’
7 0xd 0 Oxt
therefore 9
,U’L
2— = \(7
ox' (7).
ovt O’ o
9 + o 0, forall i # j.
ot O’ o
o = Dyl for all 1, j, (1)
o' o’ o,
9 = B for all 7 # j. (2)
Let us remark that for n = 2 we get
ot _ ov?
(- ®
92T = 027



System (3) coincides with the Cauchy-Riemann equations. Therefore conformal Killing
vector fields in R? = C! are exactly holomorphic vector fields.

Let us return to the n = 3 case. Denote the coordinates in R*® by (z,y,2). Let us
calculate the conformal Killing vector fields algebra step by step.

Step 1. From (1), (2) it follows that vector field ¥/(z) generates an infinitesimal conformal
transformation iff:

ot ow® o?

or oy T 0z (4)
o 5)
oy ox’
ov! ov?

9 or ®)
oo )
0z oy’

Step 2. It is easy to check that the following vector fields satisfy equations (4)-(7):

1) generators of translations

vt 1 vt 0 vt 0
Pl 1)2 = |0 5 P2 U2 = |1 ; P3 U2 = |0 5 (8)
v3 0 v3 0 v3 1
2) generators of rotations
vt —y vt 0 vt z
M vl = , Mo V| = |-z , Mz vl =10 ) (9)
v3 0 v3 Y v3 —x
3) generator of dilations
vt T
D:|v* = |y|; (10)
v3 z
4) conformal generators
vl 2?2 —y?— 22 vl 2xy vl 2xz
Ky [v?] = 2y Ko [0 = |y -2t =2 Ky |0 = 2yz
v3 2wz v3 2z v3 22— 22 —q?
(11)
Step 3. Using (5), (7), we obtain
0?v! 0%v? 03

0y0z T 020z 0xdy
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Using (6), we obtain

0?v! 03
Oy0z B  Ox0y’
therefore
0! .
e =0, and v = Fi(z,y) + Fs(z, 2). (12)
We have
o _ont
oxr Oy’
therefore
%t v _821)1
0z O0xOy  Oy?’
and
0?v! 0?vt
0r2 022
We see that

o*vt 9%l

0y? 022

=0, (13)

By comparing (12), (13) and using analogous arguments for v, v we obtain:
v' = foo(x) + fro(2)y + for(z)z + fua(2)[y® + 27, (14)
v* = goo(y) + gro(y) + g ()2 + g (y)[a® + 27, (15)
U3 = hOQ(Z) + hlo(Z)l’ + h01(2)y + h11<2)[$2 -+ y2] (16)
By substituting (14), (15) into (5), we obtain:
fro(@) +2fu(z)y = —g10(y) — 2911 (v)7, (17)

Therefore the functions fio(x), fi1(z) are linear in x, g19(y), g11(y) are linear in y. Using
equations (6), (7), we obtain:

v = foolx) + (fio + i)y + (for + forx)z + (f + fho)ly® + 2%, (18)
v = goo(y) + (g + gioy) + (901 + 90 y)z + (981 + 911y)[x* + 27, (19)
v® = hoo(2) + (hly + hip2)x + (hgy + hoy2)y + (b + hpy2)[2® + 7). (20)

From (17) and analogous equations for (6), (7) if follows that
fli=—gn, fhi=-Pu, gn=—hn,

f110 = _29?17 f&l = _Qh(l)h 9%0 = _2f101> 9(%1 = _Qh?p h%o = _2]5101’ h(l)l = —29?17
therefore
f111 = 9%1 = h%l =0,



and

vt = fOO(x) + (f?o - 29?1x)y + ( 2h(l]ﬁ)z + f?l[QZ + 22]7 (21)
v = goo(y) + (910 — 2/)7 + (g0, — 2h319) = + gy [2* + 27, (22)
v? = hoo(2) + (hgo - 2f1012)$ + (h 29112)9 + hn[x +y ] (23)

By adding generators (8) - (10) we can cancel constant and linear terms at the point
r =1y =z =0, and without loss of generality we obtain:

= foo(x) = 2902y — 209 2 + f[y? + 27, (
v* = goo(y) — 2fhya — 200 yz + g7y [a? + 27, (
= hoo(2) = 2ft1za — 297, 2y + Iy [2? + ¢, (26
fOO( ) = g00(0) = hgo(0) = 0. (

From (4) it follows that
Joo(z) = —f&fo, goo(y) = —9?192, hoo(z) = —h?le.
We proved the following Theorem:

Theorem 6. The Lie algebra of vector fields generating local conformal transformations
of R3 has the following 10-dimensional basis Pi, Py, P3, My, Mas, M3, D, Ky, Ky, K3,
where:

01 1 v!] 0 vl 0
P (vt = (0], P [V = (1|, P3: |v*] =|0],
_v?’ 0 v3_ 0 v3 1
v!] —y V] [0 vl 2
M12 . ’U2 = T s M23 U2 = |—Z, M31 U2 = 0 s
U3_ 0 v3_ v v3 —T
vl T vl 2 — 2 — 22
D: (v = |y|, Ki: |V = 2xy ,
v3 2z v? | 2xz
vt 2zy vt 2xz
Ky: [0 = |y —a22 =22, Ks: |v?] = 29z
v3 2yz v3 22— x? — y2

Therefore, we proved that these 10 vector fields form a full basis of solutions and we
also discovered that it is finite-dimensional.
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