
Grinevich Petr Georgievich

Lecture notes

Conformal geometry and Riemann surfaces

Lecture notes were prepared by the student of the mathematics and
mechanics faculty

Raev Aleksey Alekseevich



Lecture 3

Algebra of conformal Killing vector fields

Definition 1. Let (Mn, gij(x⃗) be a Riemannian manifold. Vector field v⃗(x⃗) is called a
Killing vector field, if (Lv⃗g)ij = 0.

Definition 2. Let Mn be a manifold equipped with a conformal structure, gij(x⃗) be a
Riemannin metric representing the conformal class of Mn. Vector field v⃗(x⃗) is called a
conformal Killing vector field, if (Lv⃗g)ij = λ(x⃗)gij(x⃗) for some scalar function λ(x⃗).

It is easy to check that Definition 2 is correct. Assume that we have two different
metrics gij(x⃗), g̃ij(x⃗) representing the same conformal class:

g̃ij(x⃗) = α(x⃗)gij(x⃗), α(x⃗) ∈ R, α(x⃗) > 0.

Then
(Lv⃗g̃)ij(x⃗) = Lv⃗(α(x⃗)gij(x⃗)) = Lv⃗α(x⃗) gij(x⃗) + α(x⃗)Lv⃗gij(x⃗) =

= Lv⃗α(x⃗) gij(x⃗) + α(x⃗)λ(x⃗)gij(x⃗) =
Lv⃗α(x⃗)

α(x⃗)
g̃ij(x⃗) + α(x⃗)λ(x⃗)α−1(x⃗)g̃ij(x⃗) =

= λ̃(x⃗)g̃ij(x⃗),

where
λ̃(x⃗) =

Lv⃗α(x⃗)

α(x⃗)
+ λ(x⃗).

From the formula for the Lie derivative it follows immediately that:

Theorem 1. V (x⃗) is a generator of an infinitesimal conformal transformation, if

vα
∂gij
∂xα

+
∂vα

∂xi
gαj +

∂vα

∂xj
giα = λ(x⃗)gij.

Let me recall, that the situation with conformal maps is completely different for n = 2
and n ≥ 3.

1) Let n = 2. Then we can treat R2 as C1. Let U be an open subset U ⊂ C1, f(z)
be a locally invertible map U → C1. Then this map is conformal iff f(z) is either
holomorphic or antiholomorphic. Holomorphic maps preserve the orientation,
antiholomorphic maps reverse the orientation. The space of such maps is infinite-
dimensional.

The situation changes if we consider global conformal transformations.

Theorem 2. Let S2 = CP 1 be the Riemann sphere. Then the group of globally
defined invertible conformal maps coincides with the 2-dimensional Möbius group.

2) For n ≥ 3 the following statement takes place:
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Theorem 3. Let Mn, n ≥ 3 be a manifold equipped with a conformal structure,
U ⊂ Mn. Then the space of conformal maps U → Mn is finite dimensional and
its dimension is not higher than the dimension of the Mobius group.

A special case of this theorem is known as Liouville theorem.

Theorem 4. Let Mn = Rn, and conformal structure is generated by the standard
Euclidean metric gij(x⃗) = δij. Then any conformal map U → Rn, where U ⊂ Rn

coincides with the restriction of some Möbius map Rn → Rn to U .

Proof of Liouville theorem can be found in the book “Modern geometry” by
Dubrovin, Novikov, Fomenko.

We do not provide a proof of these Theorems in our course. But to explain it, we proof
an infinitesimal version of the Liouville theorem for R3. As we explained above, a vector
field v⃗(x⃗) generates a one-parametric family of conformal maps iff v⃗(x⃗) is conformal
Killing, i.e.

Lv⃗g(x⃗)ij = λ(x⃗)g(x⃗)ij,

for some real-valued function λ(x⃗).

Theorem 5. Let U ⊂ R3 be an open subset of R3 equipped with conformal structure
generated by the standard Euclidean metric g(x⃗)ij = δij. Then the algebra of conformal
Killing vector fields coincides with the Lie algebra of the Möbius group.

Remark 1. In fact, this Theorem is true for any n ≥ 3, and our proof works for any
n ≥ 3 after minor modifications. But to avoid unnecessary technical complications we
consider in our lectures only the case n = 3.

Proof. Calculating the Lie derivative for g(x⃗)ij = δij we immediately obtain

Lv⃗δij =
∂vi

∂xj
+

∂vj

∂xi
,

therefore
2
∂vi

∂xi
= λ(x⃗),

∂vi

∂xj
+

∂vj

∂xi
= 0, for all i ̸= j.

∂vi

∂xi
=

∂vj

∂xj
, for all i, j, (1)

∂vi

∂xj
= −∂vj

∂xi
, for all i ̸= j. (2)

Let us remark that for n = 2 we get{
∂v1

∂x1 = ∂v2

∂x2 ,
∂v2

∂x1 = − ∂v1

∂x2 .
(3)
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System (3) coincides with the Cauchy-Riemann equations. Therefore conformal Killing
vector fields in R2 = C1 are exactly holomorphic vector fields.

Let us return to the n = 3 case. Denote the coordinates in R3 by (x, y, z). Let us
calculate the conformal Killing vector fields algebra step by step.

Step 1. From (1), (2) it follows that vector field v⃗(x) generates an infinitesimal conformal
transformation iff:

∂v1

∂x
=

∂v2

∂y
=

∂v3

∂z
, (4)

∂v1

∂y
= −∂v2

∂x
, (5)

∂v1

∂z
= −∂v3

∂x
, (6)

∂v2

∂z
= −∂v3

∂y
, (7)

Step 2. It is easy to check that the following vector fields satisfy equations (4)-(7):

1) generators of translations

P1 :

v1v2
v3

 =

10
0

 , P2 :

v1v2
v3

 =

01
0

 , P3 :

v1v2
v3

 =

00
1

 , (8)

2) generators of rotations

M12 :

v1v2
v3

 =

−y
x
0

 , M23 :

v1v2
v3

 =

 0
−z
y

 , M31 :

v1v2
v3

 =

 z
0
−x

 , (9)

3) generator of dilations

D :

v1v2
v3

 =

xy
z

 ; (10)

4) conformal generators

K1 :

v1v2
v3

 =

x2 − y2 − z2

2xy
2xz

 , K2 :

v1v2
v3

 =

 2xy
y2 − x2 − z2

2yz

 , K3 :

v1v2
v3

 =

 2xz
2yz

z2 − x2 − y2

 .

(11)

Step 3. Using (5), (7), we obtain

∂2v1

∂y∂z
= − ∂2v2

∂x∂z
=

∂2v3

∂x∂y
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Using (6), we obtain
∂2v1

∂y∂z
= − ∂2v3

∂x∂y
,

therefore
∂2v1

∂y∂z
= 0, and v1 = F1(x, y) + F2(x, z). (12)

We have
∂v1

∂x
=

∂v2

∂y
,

therefore
∂2v1

∂x2
=

∂v2

∂x∂y
= −∂2v1

∂y2
,

and
∂2v1

∂x2
= −∂2v1

∂z2
.

We see that
∂2v1

∂y2
− ∂2v1

∂z2
= 0, (13)

By comparing (12), (13) and using analogous arguments for v2, v3 we obtain:

v1 = f00(x) + f10(x)y + f01(x)z + f11(x)[y
2 + z2], (14)

v2 = g00(y) + g10(y)x+ g01(y)z + g11(y)[x
2 + z2], (15)

v3 = h00(z) + h10(z)x+ h01(z)y + h11(z)[x
2 + y2]. (16)

By substituting (14), (15) into (5), we obtain:

f10(x) + 2f11(x)y = −g10(y)− 2g11(y)x, (17)

Therefore the functions f10(x), f11(x) are linear in x, g10(y), g11(y) are linear in y. Using
equations (6), (7), we obtain:

v1 = f00(x) + (f 0
10 + f 1

10x)y + (f 0
01 + f 1

01x)z + (f 0
11 + f 1

11x)[y
2 + z2], (18)

v2 = g00(y) + (g010 + g110y)x+ (g001 + g101y)z + (g011 + g111y)[x
2 + z2], (19)

v3 = h00(z) + (h0
10 + h1

1oz)x+ (h0
01 + h1

01z)y + (h0
11 + h1

11z)[x
2 + y2]. (20)

From (17) and analogous equations for (6), (7) if follows that

f 1
11 = −g111, f 1

11 = −h1
11, g111 = −h1

11,

f 1
10 = −2g011, f 1

01 = −2h0
11, g110 = −2f 0

11, g101 = −2h0
11, h1

10 = −2f 0
11, h1

01 = −2g011,

therefore
f 1
11 = g111 = h1

11 = 0,
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and

v1 = f00(x) + (f 0
10 − 2g011x)y + (f 0

01 − 2h0
11x)z + f 0

11[y
2 + z2], (21)

v2 = g00(y) + (g010 − 2f 0
11y)x+ (g001 − 2h0

11y)z + g011[x
2 + z2], (22)

v3 = h00(z) + (h0
10 − 2f 0

11z)x+ (h0
01 − 2g011z)y + h0

11[x
2 + y2]. (23)

By adding generators (8) - (10) we can cancel constant and linear terms at the point
x = y = z = 0, and without loss of generality we obtain:

v1 = f00(x)− 2g011xy − 2h0
11xz + f 0

11[y
2 + z2], (24)

v2 = g00(y)− 2f 0
11yx− 2h0

11yz + g011[x
2 + z2], (25)

v3 = h00(z)− 2f 0
11zx− 2g011zy + h0

11[x
2 + y2], (26)

f00(0) = g00(0) = h00(0) = 0. (27)

From (4) it follows that

f00(x) = −f 0
11x

2, g00(y) = −g011y
2, h00(z) = −h0

11z
2.

We proved the following Theorem:

Theorem 6. The Lie algebra of vector fields generating local conformal transformations
of R3 has the following 10-dimensional basis P1, P2, P3,M12,M23,M31, D,K1, K2, K3,
where:

P1 :

v1v2
v3

 =

10
0

 , P2 :

v1v2
v3

 =

01
0

 , P3 :

v1v2
v3

 =

00
1

 ,

M12 :

v1v2
v3

 =

−y
x
0

 , M23 :

v1v2
v3

 =

 0
−z
y

 , M31 :

v1v2
v3

 =

 z
0
−x

 ,

D :

v1v2
v3

 =

xy
z

 , K1 :

v1v2
v3

 =

x2 − y2 − z2

2xy
2xz

 ,

K2 :

v1v2
v3

 =

 2xy
y2 − x2 − z2

2yz

 , K3 :

v1v2
v3

 =

 2xz
2yz

z2 − x2 − y2

 .

Therefore, we proved that these 10 vector fields form a full basis of solutions and we
also discovered that it is finite-dimensional.
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