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Lecture 4

Möbius group and Lorentz group

Let us construct a realization of Möbius transformations as the Lorentz transformation.
Consider now the sphere Sn and the space Rn+1,1, which is a n + 2-dimensional space
with the pseudoeuclidean metric.

We consider two main examples:

1) We will do calculations for n = 3.

2) We draw the figures for n = 1.

Consider the space R4,1 with the coordinates (x = x1, y = x2, z = x3, w = x4, t = x0)
equipped with the pseudo-euclidean metric

ds2 = dx2 + dy2 + dz2 + dw2 − dt2.

Denote by C the light cone in R4,1

x2 + y2 + z2 + w2 − t2 = 0. (1)

Denote by PC the set of lines lying in C and passing through the origin. Equivalently,
PC can be defined is the following way:

By definition, the projective space RP 4 is the set of all lines in R4,1 = R5 passing
through the origin. Then PC is the algebraic surface in RP 4 defined by equation (1).
Let us recall that algebraic varieties in RP n are defined by homogeneous polynomial
equations.

Lemma 1. The space PC is isomorphic to S3.

Proof. To define a line P1 it is sufficient to choose 2 point on it. The elements of
PC are lines passing through the origin (0, 0, 0, 0, 0), therefore to fix a point in PC it is
sufficient to fix one more point (x1, y1, z1, w1, t1) different from the origin and satisfying
(1). Two points (x1, y1, z1, w1, t1) and (x2, y2, z2, w2, t2) define the same line iff

(x1, y1, z1, w1, t1) = λ(x2, y2, z2, w2, t2), λ ∈ R, λ ̸= 0.

From (1) it follows that t1 ̸= 0, therefore we can canonically choose the a point defining
the line:

X =

(
x1

t1
,
y1
t1
,
z1
t1
,
w1

t1
, 1

)
.

It is clear that the point X is exactly the intersection of the line P1 with the hyperplane
t = 1, and we have one-to-one correspondence between PC and the intersection of the
cone C with the hyperplane t = 1. The points of this intersection are defined by:{

x2 + y2 + z2 + w2 − t2 = 0,

t = 1,
(2)
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therefore we obtain:
x2 + y2 + z2 + w2 = 1. (3)

Equation (3) is exactly the equation of S3 ⊂ R4.
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Figure 1. We draw the case n = 1. Here C is the light cone in R2,1, CP is the set of lines
lying in the cone Cand passing through the origin. The plane t = 1 intersects the cone
by a circle S1. Each line P from CP intersects S1 at a point X, and through each point
of S1 passes exactly one line from PC. Therefore we have one-to-one correspondence
between PC and S1.

Let us check that the pseudo-Euclidean metric on R4,1 naturally defines conformal
structure on PC, invariant with respect to the Lorentz group action. Let us denote the
metric on R4,1 by <,>: if

u⃗ = (u1, u2, u3, u4, u0), v⃗ = (v1, v2, v3, v4, v0),

then
< u⃗, v⃗ >= u1v1 + u2v2 + u3v3 + u4v4 − u0v0

Remark 1. Of course, the restriction of <,> to the intersection of the cone C with the
hyperplane t = 1 defines the standard Reimannian metric on S3. But the the hyperplane
t = 1 is not invariant under the action of the Lorentz group, therefore this Reimannian
metric is also not inariant; in fact the the Lorentz group respects only its conformal
class.

Let P0 ∈ PC and X0 be a point of the line P0, different from the origin:

X0 = (x0, y0, z0, w0, t0), < X,X >= 0.

Lemma 2. The tangent space to PC at the point P0 is isomorphic to the factor-space
TX0C/{X0}. Here TX0C is the tangent space to the cone C at the point X0 and {X0}
denote the one-dimensional subspace generated by the vector X0.

Proof. Let P1 be a line, infinitely close to P0. Then it passes through a point

X1 = X0 + εv⃗ + o(ε).
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Both points X0, X1 lie in the cone C, therefore v is a tangent vector to the cone C at
the point X0. But we have to take into account that, if we shift the point X0 along the
line P0, the line remains the same. Therefore a vector v⃗ generates the trivial variation
of the line iff

v⃗ = λX0.

But it means exactly that we have to factor TX0C by {X0}.

Let us recall that the cone C is defined by the equation:

F (X) = 0, where F (x) =< X,X >= x2 + y2 + z2 + w2 − t2. (4)

The tangent space TX0C to the cone C at the point X0 is defined by

(∇F (X)
∣∣
X=X0

, v⃗) = 0, (5)

where (, ) is the standard pairing between vectors and covectors, and

∇F (X) = (2x, 2y, 2z, 2w,−2t).

Therefore equation (5) can be rewritten as:

< X0, v⃗ >= 0. (6)

From (5) and (6) it follows immediately that X0 ∈ TX0C.

Let us prove:

Lemma 3. 1) The restriction of the scalar product <,> to the TX0C is well-defined
on TX0C/{X0}.

2) This restriction is positive defined.

Proof. To prove the first statement it is sufficient to check that if two pairs u⃗1, v⃗1 and
u⃗2, v⃗2 represent the same pair of vectors ũ, ṽ from the factor-space, then

< u⃗1, v⃗1 >=< u⃗2, v⃗2 > .

But u⃗1 and u⃗2 represent the same vector in the factor-space iff

u⃗2 = u⃗1 + αX0,

analogously
v⃗2 = v⃗1 + βX0.

We have

< u⃗2, v⃗2 >=< u⃗1+αX0, v⃗1+βX0 >=< u⃗1, v⃗1 > +α < αX0, v⃗1 > +β < u⃗1, X0 > +αβ < X0, X0 >=

=< u⃗1, v⃗1 > .
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Here we used formula (6). To prove the second part of the Lemma, let for calculating
the scalar product on the factor-space we can freely choose representatives from the
equivalence class. If

u⃗ = (u1, u2, u3, u4, u0), v⃗ = (v1, v2, v3, v4, v0),

then
< u, v >=< ũ, ṽ >,

where
ũ =

(
u1 − u0

t0
x0, u

2 − u0

t0
y0, u

3 − u0

t0
z0, u

4 − u0

t0
w0, 0

)
ṽ =

(
v1 − v0

t0
x0, v

2 − v0

t0
y0, v

3 − v0

t0
z0, v

4 − v0

t0
w0, 0

)
But for the pairs (ũ, ṽ) we have the standard Euclidean scalar product, restricted to a
subspace, therefore it is non-degenerate and positive defined.

Remark 2. The scalar product defined in Lemma 3 does not define Riemannian metric
on PC, because this scalar product depends on the choice of X0. But if we replace X0 by
λX0, the scalar product is multiplied by λ2. Therefore the Riemannian metric is defined
up to a conformal factor, i.e. we have conformal structure.

Taking into account that the Lorentz group preserves the scalar product <,>, we see
that it preserves this conformal structure. Finally we come to the following conclusion:

Theorem 1. Any Lorentz transformation of R4,1 generates a conformal transformation
of S3.

It is easy to check that we obtain the full Möbius group.

Denote by A an element of the Lorentz group O(4, 1):

A =


a1,1 a1,2 a1,3 a1,4 a1,0
a2,1 a2,2 a2,3 a2,4 a2,0
a3,1 a3,2 a3,3 a3,4 a3,0
a4,1 a4,2 a4,3 a4,4 a4,0
a0,1 a0,2 a0,3 a0,4 a0,0


Denote by O+(4, 1) the subgroup of the Lorentz group defined by

a0,0 > 0.

It has two connected components, and O+(4, 1) is isomorphic to Möbius(R3).

Let us provide explicit formulas for the action of O+(4, 1) at S3. Consider the standard
S3 ⊂ R4 defined by

x2 + y2 + z2 + w2 = 1.
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Then matrix A ∈ O+(4, 1) defines the following map S3 → S3:
x
y
z
w

 →


a1,1x+a1,2y+a1,3z+a1,4w+a1,0
a0,1x+a0,2y+a0,3z+a0,4w+a0,0
a2,1x+a2,2y+a2,3z+a2,4w+a2,0
a0,1x+a0,2y+a0,3z+a0,4w+a0,0
a3,1x+a3,2y+a3,3z+a3,4w+a3,0
a0,1x+a0,2y+a0,3z+a0,4w+a0,0
a4,1x+a4,2y+a4,3z+a4,4w+a4,0
a0,1x+a0,2y+a0,3z+a0,4w+a0,0

 .
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