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Lecture 8

Beltrami equation

Starting from this Lecture we will concentrate on the case n = 2.

The aim of the next two Lectures is to prove that all 2-dimensional conformal Rieman-
nian manifold are conformally flat.

More precisely:

Theorem 1. Let (M2, gij(x⃗)) be a 2-dimensional Riemannian manifold, x⃗0 be a point
of M2. Then there exist a neighborhood U(x⃗0)) and a local coordinate system (u, v) at
U such that in the coordinates (u, v) the metric tensor has the form

gij(u, v) = e2ω(u,v)δij, (1)

where ω(u, v) is scalar real function.

Definition 1. Coordinates u, v such that gij(u, v) = e2ω(u,v)δij are called isothermal.

How to construct them?

Definition 2. Let M2 be a smooth oriented 2-dimensional manifold equipped with a
Riemannian metric

G =

(
g11 g12,
g21 g22

)
.

The quasicomplex structure on M2 is a linear operator J acting on the tangent
bundle TM2 such that

1. For any point x⃗0 ∈ M2 it maps the tangent space to this point Tx⃗0M
2 onto itself.

2. The restriction of J to the space Tx⃗0M
2 is isometry with respect to the Riemannian

metric gjk; moreover, it is the 90 degrees counterclockwise rotation.

3. J2 = −1.

Proposition 1. Let (x1, x2) be a positive coordinate system on M2. Then the we have
the following formula for J :

J =
1√
|G|

(
−g12 −g22
g11 g12

)
.

Proof. Consider the tangent space to a fixed point x⃗0. Let:

J =

(
a11 a12,
a21 a22

)
.
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Since Je1 =
(

a11
a21

)
, Je2 =

(
a12
a22

)
, we can explicitly write the conditions on J :

[a11a21]

(
g11 g12,
g21 g22

)(
1
0

)
= 0, [a12a22]

(
g11 g12,
g21 g22

)(
0
1

)
= 0

Hence, a11g11 + a21g12 = 0 and
(

a11
a21

)
= C1

(
−g12
g11

)
. Since we want a rotation in a

positive direction, C1 > 0. Similarly,
(

a12
a22

)
= C2

(
−g22
g12

)
, C2 > 0. Then we have

C2
1 [−g12 g11]

(
g11 g12,
g21 g22

)(
−g12
g11

)
= g11

Then
C2

1 [0 g11g22 − g212]

(
−g12
g11

)
= g11.

Therefore,

C1 =
1

g11|G|
.

Finally,

Je1 =
1√
|G|

(
−g12
g11

)
,

Je2 =
1√
|G|

(
−g22
g12

)
.

Hence, we proved that

J =
1√
|G|

(
−g12 −g22
g11 g12

)
.

One can easily check that

J2 =
1

|G|

(
g212 − g11g22 0

0 g212 − g11g22

)
=

(
−1 0
0 −1

)
.

Now we ask ourselves: how to find the isothermic coordinates? If coordinates (u, v) are
isothermal, then

J =

(
0 −1
1 0

)
.

Let us introduce complex coordinate: w = u+ iv. We already know ∂zz = 0. One can
write

∂w =
1

2
[∂u + i∂v] =

1

2
[∂u + iJ∂u] .

It is easy to check that
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Lemma 1. Let a vector field W⃗ ̸= 0 in a neighborhood of a point x⃗0. Then a local
coordinate system (u, v) is isothermal iff the function w = u + iv satisfies Beltrami
equation

[LW⃗ + LJW⃗ ]w = 0, (2)

where LW⃗ denotes the directional derivative along the vector field W⃗ .

Therefore, to construct local isothermal coordinates near a point x⃗0, it is sufficient to
construct local solution of the Beltrami equation such that LW⃗w ̸= 0 at the point x⃗0

and to define coordinates (u, v) by

u = Re w, v = Im w.

Our next step is to prove existence of Beltrami equation solutions!

Beltrami equation

Let (x, y) be local coordinates near the point x⃗0. We can choose W⃗ = ∂x, and the
Beltrami equation takes the form

Dw = 0, where D = ∂x + iJ∂x. (3)

Using Propositions 1 we obtain

D = ∂x +
i

|G|
[−g12∂x + g11∂y].

Using that
∂x = ∂z + ∂z, ∂y = i[∂z − ∂z]

we obtain

D = ∂z + ∂z −
ig12√
|G|

[∂z + ∂z] +
i√
|G|

ig11[∂z − ∂z] = a(z, z)∂z + b(z, z)∂z,

where

a(z, z) =

[
1 +

g11√
|G|

− ig12√
|G|

]
, b(z, z) =

[
1− g11√

|G|
− ig12√

|G|

]
.

g11 > 0, therefore

|Re a(z, z)| > |Re b(z, z)|, |Im a(z, z)| = |Im b(z, z)|,

and
|α(z, z)| < 1, where α(z, z) =

a(z, z)

b(z, z)
.

|a| > 0, therefore Equation 3 is equivalent to

1

a
Dw = 0,
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and finally we transform Beltrami equation to the following form

[∂z + α(z, z)∂z]w(z, z) = 0. (4)

We are looking for local solutions of (4), therefore without loss of generality we may
assume that α has compact support.

We are looking for non-zero solutions of this equation. It is convenient to replace this
differential equation by an integral one. Let us try to find a solution of (4) in the
following form:

w(z, z) = ϕ(z) + ∂−1
z f(z, z), (5)

where ϕ(z) is a holomorphic function. Equation 4 is equivalent to

f(z, z) = −α(z, z)ϕ′(z)− α(z, z) ∂z∂
−1
z f(z, z). (6)

It is natural to solve (7) using the standard iteration procedure

f0(z, z) = −α(z, z)ϕ′(z), fk+1(z, z) = −α(z, z)ϕ′(z)− α(z, z) ∂z∂
−1
z fk(z, z). (7)

It is important to choose a proper functional space. We shall use the Sobolev space
H = W l,2(R2) with a “weighted” norm, depending on an extra real parameter λ > 0.
Denote by f̂(p, q) the Fourier transform of f(x, y):

f(x, y) =
1

2π

∫ ∫
eipx+iqyf̂(p, q)dpdq,

The scalar product < , > in the space W l,2(R2) is defined by

< f, g > =

∫ ∫
f̂(p, q)ĝ(p, q)(1 + λ2(p2 + q2))ldpdq =

=

∫ ∫ [
l∑

k=0

l=k∑
j=0

(
l

j + k

)(
j + k

j

)
λ2j+2kp2jq2k

]
f̂(p, q)ĝ(p, q)dpdq = (8)

=
l∑

k=0

l=k∑
j=0

(
l

j + k

)(
j + k

j

)
λ2j+2k

(
∂j
x∂

k
yf, ∂

j
x∂

k
yg
)
,

where ( , ) denotes the standard L2 scalar product

(f, g) =

∫ ∫
f(x, y)g(x, y)dxdy =

∫ ∫
f̂(p, q)ĝ(p, q)dpdq. (9)

We see that ∣∣(∂j
x∂

k
yf, ∂

j
x∂

k
yg
)∣∣ ≤ 1

λ2j+2k
< f, g > . (10)

The Fourier transform maps the partial derivatives to multiplication operators:

∂x → ip, ∂y → iq, ∂z →
i

2
(p+ iq) .

Hence,

∂−1
z ∂z →

(
p− iq

p+ ig

)
,

therefore ∂−1
z ∂z is a unitary operator in H. It is easy to check
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Lemma 2. If α(x, y) is a smooth function with a compact support and |α(x, y)| ≤ C < 1,
then for sufficiently small λ norm of multiplication by α(x, y) in the space H is smaller
then 1.

Therefore for sufficiently small λ the operator α(z, z) ∂z∂
−1
z is contracting and Equa-

tion 7 has an unique solution for arbitrary ϕ(z).

Let us recall the proof of the Sobolev’s embedding theorem.

Assume that α is k times differentiable, f ∈ W l,2(R2), which means∫ ∫
(1 + p2 + q2)l|f(p, q)|dpdq < ∞.

By Cauchy Bunyakovski ineqaulity,[∫
|fg|

]2
⩽

∫
|f |2

∫
|g|2.

By taking f(p, q) = (1 + p2 + q2)−1 and g = (1 + p2 + q2)l/2f(p, q) and putting it into
the inequality, we have ∫

|(1 + p2 + q2))
k−2
2 f(p, q)|dpdq < ∞.

We proved that when l = 2, f̂(p, q) ∈ L1 and f is continuous; when l = 3, fz, fz ∈ L1

and f is differentiable. Therefore, the isothermic coordinate exists at least locally and
we have local flatness.
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