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Abstract: Chain plasmonic waveguides are formed by linear arrays of
metallic grains embedded in a dielectric matrix. Plasmonic structures of this
kind have potential applications to subwavelength guiding, subwavelength
imaging and SERS technology. We present qualitative analysis and nu-
merical results for bound plasmonic modes propagating along the chain of
closely spaced silver cylinders of subwavelength diameter. The dispersion
relation and electromagnetic field structure of the modes are calculated
by the cylindrical harmonic expansion method. We demonstrate that it is
possible to match simultaneously both the frequency and wave number of
the fundamental transverse mode and the first longitudinal mode in optical
range. The application of dense chain of cylinders for optical switching
between guided modes is discussed.
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1. Introduction

Metallic nanostructures are known to exhibit strong subwavelength localization of the guided
signals due to the excitation of the surface plasmon-polaritons (SPP) at the metal-dielectric in-
terfaces. Various architectures of waveguides have been proposed for guiding SPP modes at op-
tical wavelengths: metal nanorods, thin metal films, nanoholes in a metallic medium, nanogaps
between metallic media, sharp metal wedges and nanogrooves, hybrid plasmonic waveguides
[1]. There is also a class of periodic geometries that can be used in subwavelength optics. In
the so-called chain plasmonic waveguide the electromagnetic energy is transferred via the near-
field plasmon coupling between periodically arranged metal grains [2]. The resulting plasmonic
mode is highly confined to the vicinity of the line of the grains. The guiding of visible light using
the arrays of metal nanoparticles has been demonstrated both numerically and experimentally
[3, 4, 5, 6, 7, 8]. It has been also reported that for suitably chosen parameters the propagation
of light in linear chains of metallic nanospheroids is almost free of spatial decay [9]. Potential
applications of the periodic arrays of metal grains are not restricted by the plasmon nanoguid-
ing, the intensive research in electrodynamic properties of these structures is motivated also by
its importance for SERS technology [10, 11], subwavelength imaging and sensing [12].

The guiding properties of sufficiently sparse chains of grains can be effectively considered
analytically with the aim of dipole approximation, see [13] for the case of spherical grains and
[14] for the case of the ordered array of the metal wires. Clearly, the perturbation approach fails
when the interwire distance is much less than the wire radius since the coupling of high-order
multipoles becomes important. Using the multipole description, it was shown in [7, 15] that the
dipole approximation sufficiently deviates from the exact solution even for moderately dense
array of spherical grains.

In this study we focus on the guiding properties of the very dense chain of infinitely long



Fig. 1. Charge distribution at wave number q = π/L for a) the fundamental mode and b)
the first longitudinal mode.

metal cylinders. We show that the typical frequency of guided modes decreases as the inter-
wire distance diminishes and that for sufficiently small inter-wire distance the dispersion curves
of two lowest modes of the chain have intersections in optical range. This feature allows to
match both frequency and wave number of the bound modes with different field structures.
In our investigation, we use semi-analytical method which is based on the representation of
the electromagnetic field of a guided mode as a coherent linear superposition of the localized
plasmonics modes of separate wires. The approach is highly efficient for numerical solving the
wave propagation and scattering problems in the composite systems [16, 17, 18, 19, 20]. The
accuracy of our results is verified by means of the finite element method from COMSOL.

2. Qualitative description

Generally the guided modes of chain waveguide can be considered as a coherent excitation
of plasmonic modes of individual cylinders. Say, in the main approximation the fundamental
mode of sufficiently sparse chain is described by the interacting dipole harmonics associated
with transversal oscillations of electrical charge. However, when the interparticle distance gets
smaller, the dipolar model becomes inappropriate because of the significant contribution of the
high-order harmonics. The optical properties of closely packed particles are very different from
those of distant particles. In the limit of extremely small inter-wire spacing the fundamental
mode of the chain has nothing to do with the superposition of oscillating dipole harmonics of
individual wires. The guiding mechanism in the very dense chain is the coherent excitation of
strongly localized plasmonic modes in the narrow gaps between the cylinders, see Fig. 1.

It is possible to estimate the typical frequency of a plasmonic mode, making a start from the
solution for the localized plasmonic modes in the system of two metal cylinders separated by a
small gap [21]. The analysis is quite simple if the cylinders’ radius R is much smaller than the
wavelength λ , R� λ . Then, the electromagnetic field near the cylinders can be treated in the
quasi-static approximation. The field is concentrated inside the plane part of the gap region of
length ∼

√
Rh where standing plasmon wave is excited, see Fig. 1. In this case, the dispersion

of the mode stems mainly from the frequency dependence of the dielectric permittivities εm and
εd for the metal and the surrounding dielectric media correspondingly. The frequency scaling
with the large parameter R/h� 1 of both the fundamental and the first longitudinal modes is



estimated from the relation
εm

εd
∼− 2R/h+1√

4R/h+1
≈−

√
R/h. (1)

up to some factors of the order of unity. The factors can be found from the exact solution of
the quasi-static equation for each mode, thus they are determined by the field structure on the
scale L of the whole period. In particular this means that the result generally depends on quasi-
momentum q. Below we demonstrate that estimate (1) is valid for wave numbers which are far
enough from the light line.

3. Semi-analytical approach

Let us consider an infinite periodic array of identical metal cylinders embedded in a homoge-
neous dielectric matrix. The adjacent cylinders are separated by the gap of width h. The radius
of the cylinders is R, so the period of the array is L = 2R+h. We choose the Cartesian reference
system as it is shown in Fig. 2: z-axis is directed along the cylinders, whereas x-axis is directed
normally to the plane of the cylinders. We are interested in a plasmon-polariton TM-mode of
frequency ω and the wave number q propagating along y-axis. In this case magnetic field Hz
is parallel to the cylinder axis and the only non-zero electric field components Ex and Ey are
determined by Hz.

The guided mode of the chain can be represented as superposition of localized surface plas-
monic modes of separate cylinders. Let m-th cylinders has centre mL in the y-direction. We
represent the magnetic field in the outer dielectric as a double series with Hankel functions of
the first kind

Hout
z =

+∞

∑
m=−∞

+∞

∑
n=−∞

Am
n H

(1)
n (krm)einϕm , (2)

and field inside a cylinder m as series of the modified Bessel functions of the first kind

H in
z =

+∞

∑
n=−∞

Bm
n In(κrm)einϕm , (3)

where (rm,ϕm) are the polar coordinates centered in the m-th cylinder, k =
√

εdω/c and
κ =

√
−εmω/c. These expansions satisfy the two-dimensional Helmholtz equation (∆2 +

εω2/c2)Hz = 0 inside the homogeneous areas where permittivity is constant. The boundary
conditions are the continuity of the field components tangential to each cylinders boundary.
Note that each term in series (3) and (2) corresponds to the electromagnetic field produced by
electric multipole inside the particular cylinder.

The Blochs periodic boundary condition (PBC) Hz(x,y+ jL) =Hz(x,y)eiqL j must be satisfied
for the guided mode of the wave number q, where j is integer. Thus, the electromagnetic field of
guided mode is completely determined by set of coefficients Aν ≡A0

ν and Bν ≡B0
ν . To eliminate

the unknowns Bν associated with the internal field we impose the continuity conditions on the
cylindrical surface using use Grafs addition theorem [22]. As a result, we arrive to an infinite
set of linear homogenious equations for the outer coefficients Aν . If the Ohmic losses inside the
cylinders are negligible, the dispersion law is determined by the eigenvalue problem

C̃nAn +
+∞

∑
ν=−∞

Aν F̃nν = 0, (4)

where C̃n is determined in Eq. (15) and F̃nν = ImFnν , see Eq. (8). During a numerical solution,
one should keep first terms in sum (4) which resolve angles order of

√
h/R with desired accu-

racy. The estimate follows from the analytical consideration of plasmonic modes for two closed



Fig. 2. a) The periodic grid metal cylinders. b) The continuous metal film of the same
thickness.
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Fig. 3. The metal permittivity at resonance frequency for the first two guided modes of the
chain waveguide in comparison with the resonant permittivity in system of two cylinders,
see Eq. (1). We choose q = π/L to suppress as much as possible the retardation effects.
Note, that the surface charge distribution has two nodes for the transverse mode and four
nodes for the longitudinal one at q = π/L, see Fig 1. It follows from quasi-static solution
[21] that the difference in the charge distribution leads to the longitudinal mode should
have indeed higher frequency than the transverse one.

metallic wires [21]. Due to symmetry x→−x, the linear system (4) is uncoupled for transverse
and longitudinal modes, which correspond to amplitudes tn = An + A−n and ln = An − A−n
respectively. More details of calculations and comparison with dipole approximation can be
found in Appendix.

4. Numerical results and discussion

Next we apply the approach to investigate light guiding by a dense grid of silver cylinders,
where the width of the gap is much smaller than the wires radius, h� R. The frequency de-
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Fig. 4. The dispersion diagram for a dense periodic chain of silver cylinders embedded in
air. The frequency dependence of silver permittivity is taken from experimental data [23].
a) The set of parameters R = 25 nm, h = 5 nm corresponds to touching of two dispersion
curves. b) The case of very dense array, R = 25 nm, h = 1 nm. The point of intersection
of the dispersion branches corresponds to frequency ω = 2.96 eV (λ = 418 nm) and wave
number q = 0.426π/L.

pendence of silver permittivity in optical range is extracted from experimental data [23]. First,
we show that the estimate (1) is indeed correct. For the purpose, we plot the dependence of the
resonance value of the metal permittivity as a function of cylinder radius R at fixed h = 1nm for
the fundamental transverse and first longitudinal modes, see. Fig. 3. We take quasi-momentum
q = π/L at the boundary of Brillouin zone to suppress retardation effects in the simulation.

Second, we investigate the dispersion curves for the fundamental and first longitudinal
modes. We track the dependence of dispersion curves on the thickness of the inter-wire gap
at fixed wire radius R = 25nm and show that there is some critical value hc ≈ 5nm of the width,
for which two dispersion curves touch each other, see Fig. 4(a). This means, that it is possible
to match both the frequency and the wave vector of the transverse and longitudinal modes of
the chain waveguide in optical range. For the smaller values of the width, there is the band of
quasi-momentums, for which the dispersion curve of the longitudinal mode lies below that of
the fundamental one, see Fig. 4(b). The phenomena has a qualitative explanation in terms of
quasi-static approach. Indeed, at quasi-momentums qL� 1 the surface charge distribution has
only two nodes for longitudinal mode and four for transverse one in contrary with the opposite
case qL. π , see Fig. 3. Hence, for qL� 1 the transversal mode corresponds to smaller absolute
value of εm, as it is for higher bound modes in a system of two closed metallic wires [21].

The found dispersion curves correspond to frequency range where the loss tangent of silver is
indeed small, tg < 0.05, that justifies our approximation of lossless metal. Note that waveguide
is subwavelength since the period L∼ 60 nm is much smaller than the free-space wavelength λ

which varies from∼ 400 nm to∼ 600 nm along the curves. In Fig. 5 we show two-dimensional
plots of the electromagnetic field on the xy plane at wave number q = π/L. Thus, in the case
of dense grid the field is strongly localized within the nanoscale gap between cylinders. We
also plot schematic distribution of surface charges at the metallic boundary to reveal the vector
structure of the electric field distribution, see Fig. 1.

It is informative to compare guiding along the chain of cylinders with signal guiding by the
metal film of width 2R (see Fig. 2(b)) to show that waveguide modes in a dense array have
substantial difference in comparison with those in a metal film [24]. For both these systems the
fundamental mode which has zero cut-off frequency is transverse one, while the second guided



Fig. 5. Spatial distribution of electromagnetic field for first two guided mode of dense chain
of silver cylinders at wave number q = π/L. The radius of the cylinders is R = 25 nm and
the gap width is h= 1 nm. (a) and (c) normalised distributions of total electric and magnetic
field of transverse mode; (b) ans (d) normalised distributions of total electric and magnetic
field of longitudinal mode.

mode is longitudinal, Fig. 4(b). The difference is that the modes in the chain waveguide have
lower frequency which generally is determined not solely by the thickness of the structure but
also by the thickness of the inter-wire gap. This means that chain waveguide provides stronger
mode confinement than metal film of the same thickness.

The intersection of dispersion curves is an unique feature of dense chain of metal cylinders.
The plasmonic waveguides with such dispersion property seem to be unknown in literature. We
believe that this feature can find practical applications. For example, if there is a mean to disturb
the symmetry x→−x of the waveguide by an external force, then the considered waveguide
can be exploited as an optical switcher between two lowest modes when both the frequencies
and the wavenumbers of the modes coincide.

5. Conclusion

We have investigated a plasmonic waveguide based on ordered array of closely spaced metallic
cylinders whose radius is deep below the diffraction limit. Interaction between adjacent cylin-
ders in the structure leads to coherent energy transport along the array. The typical frequency



of the lowest guided modes is determined by the surface plasmon resonance inside gap be-
tween two adjacent wires and thus decreases when the interwire distance decreases. It is shown
that the dispersion curves for two lowest bound modes which are transverse and longitudinal
have intersections when the inter-wire distance is small enough. In particular, we found the pa-
rameters for silver cylinders for which the dispersion curves touch each other. We argued that
the intersections are the result of the confinement of the bound modes inside the narrow gaps
between the adjacent cylinders.

The intersection of dispersion branches distinguishes the dense chain waveguide from the
sparse one and can potentially be used for optical switching: if one can break symmetry x→−x
of the waveguide applying an external force, then longitudinal mode is converted into transverse
one during propagation along the waveguide and vise versa. The system of two propagating
modes can be treated in the terms of two-level system, where the distance along the waveg-
uide plays the role of the time and the energies of two states are equal due to equality of the
quasi-momentums. The external force produces non-zero off-diagonal element associated with
the transition between these states. To achieve the most effective conversion the length of the
waveguide should correspond to half of Rabi cycle, see e.g. [25]. The touch of the dispersive
curves as in Fig. 4 produces widening of the frequency band where an approximate spatial
phase synchronization can be achieved and thus the conversion may be implemented. Note that
Ohmic losses lead to finite propagation length of the modes and thus the losses possesses re-
striction on the minimum value of the external force to meet a requirement of the conversion
efficiency.

Infinite cylinders which we have considered here can be viewed as an idealized model of
long rods or prolate spheroids directed along z-axis. In the case of long rods of the length
2b, we estimate that our 2D model gives well approximation for the 3D system when b� L.
Indeed, we showed, that the exact dispersion law of considered modes is determined by the field
structure on the scale of whole period L. In the case of prolate ellipsoids which was considered
in particular in [9] the criteria changes to b� L

√
R/h, where b is the longest semi-axis of

the spheroids. The criteria follows from the condition the size of the flat area of the gap in
z-direction should be large in comparison with the period of the lattice. We checked these
estimates via direct numerical simulation of wave propagation in 3D chains of spheroids and
rods, see Fig. 6(b).

Appendix

Dispersion

Here we derive the characteristic equation (4) for the eigenproblem of the chain waveguide. In
accordance with Grafs addition formula for the cylindrical functions

Hn(krm)einϕm =
+∞

∑
ν=−∞

e−
iπ
2 (n−ν)sign(m)Hn−ν(χd |m|L)Jν(χdr)eiνϕ , (5)

where we have written Hn for the Hankel function of the first kind H
(1)

n . This expansion is
valid for r < |m|L. Then the outer magnetic field close to the surface of cylinder ”0” (for r < L)
can be expressed solely in terms of in its local polar coordinates (r,ϕ)

Hout
z =

+∞

∑
n=−∞

einϕ

(
A0

nHn(kr)+Jn(kr)
+∞

∑
m=−∞,m 6=0

+∞

∑
ν=−∞

e−
iπ
2 (ν−n)sign(m)Am

ν Hν−n(k|m|L)

)
.

(6)



The unknown amplitudes Aµ
n can be expressed in the terms of the set of amplitudes A0

n in
accordance with BPC. Then, the last expression can be rewritten as

Hout
z =

+∞

∑
n=−∞

einϕ

(
AnHn(kr)+Jn(kr)

+∞

∑
ν=−∞

Fnν Aν

)
. (7)

where for convenience we have put A0
n = An and

Fnν(q) =
+∞

∑
m=−∞, m6=0

eimqLe−
iπ
2 (ν−n)sign(m)Hν−n(k|m|L). (8)

The other non-zero components or electromagnetic field are

Er =
ic

εω

1
r

∂Hz

∂ϕ
, Eϕ =− ic

εω

∂Hz

∂ r
. (9)

The continuity conditions for Hz and Eϕ on surface of cylinder ”0” lead to an infinite system of
linear homogeneous equations

AnHn(kR)+Jn(kR)
+∞

∑
ν=−∞

Fnν Aν = In(κR)Bn,

k−1[AnH
′

n (kR)+J
′

n(kR)
+∞

∑
ν=−∞

Fnν Aν ] =−κ−1I
′

n(κR)Bn.

−∞ < n <+∞ (10)

After excluding coefficients Bn we obtain

CnAn +
+∞

∑
ν=−∞

Aν Fnν = 0, (11)

where

Cn =
κH

′
n (kR)In(κR)+ kHn(kR)I

′
n(κR)

κJ ′
n(kR)In(κR)+ kJn(kR)I ′

n(κR)
, (12)

We can write Fnν = e−iπ(ν−n)/2Sν−n where the so called lattice sum Sn is defined as

Sn =
+∞

∑
m=1

Hn(kmL)
(
eimqL +(−1)ne−imqL) . (13)

Obviously, the relations S−n = (−1)nSn and F−n,−ν = Fn,ν are valid. A problem with Eq. (13) is
that the series over Hankel functions converge very slowly. However, it was shown by Twersky
[26] that lattice sum can be rewritten in an alternative form which is rapidly convergent.

In the lossless case (i.e., when Imεm = 0) the bound plasmon mode has real wave number q
under the light line, q > k =

√
εdω/c. Let us consider the first Brillouin zone, 0≤ k < q < π/L.

It can be seen from Eqs. (24)-(26) that Fnν = −δnν + iF̃nν , where F̃nν is real [28]. Thus, the
characteristic equation (11) reduces to the real form

C̃nAn +
+∞

∑
ν=−∞

Aν F̃nν = 0, (14)

where

C̃n =
κY

′
n (kR)In(κR)+ kYn(kR)I

′
n(κR)

κJ ′
n(kR)In(κR)+ kJn(kR)I ′

n(κR)
, (15)



Jn and Yn are the Bessel functions of the first and second kind correspondingly and F̃nν =
ImFnν , see Eq. (8).

Next we should consider separately the symmetric and antisymmetric modes. Let us pass to
coefficients

tn = An +A−n, 0≤ n <+∞ (16)

ln = An−A−n, 1≤ n <+∞ (17)

The linear system (14) is uncoupled for these new variables

C̃ntn +
+∞

∑
ν=0

(1− δν0

2
)(F̃nν + F̃n,−ν)tν = 0, (18)

C̃nln +
+∞

∑
ν=1

(F̃nν − F̃n,−ν)lν = 0, (19)

Solving the problem numerically it is useful to pass to the equation

(C̃|C̃|−1 + |C̃|−1/2F̃ |C̃|−1/2)Ã = 0, (20)

where Ã = |C̃|1/2A, and truncate it to some finite size N that controls numerical precision of
the scheme. The characteristic determinant of the resulting set of equation vanishes along the
dispersion curve ω(q)

det[C̃|C̃|−1 + |C̃|−1/2F̃ |C̃|−1/2] = 0. (21)

When h� R the electromagnetic field of guided mode is strongly localized in the region
where the gap can be considered as approximately plain. The transversal size of the plain part
of the gap is evaluated as ∼ 2

√
2Rh that corresponds to the central angel ∼ 2

√
2h/R. The

number of cylindrical harmonics needed to resolve the field structure of such angular size is N∼
π
√

R/2h. Thus, the rate of convergence of proposed scheme is determined by the parameter
R/h. In particular this means that our method does not work in the case of touching cylinders,
h = 0. In numerical calculations the convergence analysis was carried out to ensure that the
resonant permittivity εm(ω) varied by less than 1% with the changing of truncation order.

Figure 6(a) demonstrates the fail of the electric dipole approximation in the limit of closely
spaced cylinders, R = 25nm and h = 1nm. The dispersion relation of the fundamental prop-
agating mode is calculated by numerically solving Eq. (21) with truncated orders N = 1 and
N = 15. Dipole approximation gives wrong prediction of dispersion relation over the main part
of the Brillouin zone, where the dispersion curve sufficiently deviates from the light line.

In order to test the semi-analytical approach describing here we firstly reproduced some of
known results for sufficiently sparse grid of nm-size cylinders embedded in air, R = 25 nm
and h = 25 nm. Following [5] we approximated the frequency dispersion of metal permittivity
by the lossless Drude formula εm(ω) = 1−ω2

p/ω2 where the plasma frequency for silver is
ωp = 6.18 eV . Our results showed good agreement with those obtained in [5] by means of a
conformal dispersive finite-difference time-domain (FDTD) method. We also verified the re-
sults by means of finite-element package FEMLab from COMSOL. The numerical model is
based on the resonance excitation of the guided plasmonic modes by evanescent electromag-
netic field.

In this study the imaginary part ε ′′m of metal permittivity εm = ε ′m + iε ′′m was neglected, but
the approach could be generalized to the case of non-zero material losses. For lossy cylinders
the guided mode has complex wave vector q = q′+ iq′′ and decays during propagation. Dis-
persion relation can be found by fixing frequency ω and finding numerically complex wave
vector corresponding to a zero of the complex characteristic determinant. The procedure is
straightforward but leads to some additional computational efforts.
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Fig. 6. a) The dispersion relation of fundamental mode calculated by numerical solving the
dispersion equation with different values of truncated index: N = 1 (dipole approximation)
and N = 15 (full multipole calculations) b) The frequency of the longitudinal mode at
qL/π = 0.4: comparison between the 2D model of infinite cylinders (dashed line), 3D chain
of rods (asterisks) and 3D chain of spheroids (dots). The longest semi-axis of spheroids
is b. The height of cylinders is 2b. The transversal geometrical parameters was chosen
to be R = 25nm and h = 5nm. Thus, whereas our 2D model is good approximation for
chain of cylinders at moderate aspect ratios, it is weaker approximation for chain of prolate
spheroids. Solution for 3D model was obtained using COMSOL.

Field structure

The magnetic field in the vicinity of the cylinder ”0” is

Hout
z (r,ϕ) = i

+∞

∑
n=−∞

einϕ(Yn(kr)−C̃nJn(kr))An (22)

Hout
z (r,ϕ) = i

+∞

∑
n=−∞

einϕ(Yn(kR)−C̃nJn(kR))
In(κr)
In(κR)

An (23)

where r < L. The mode is symmetric about the line joining the cylinder centres (which is x = 0)
when A−n = An. In the case of antisymmetric mode A0 = 0 and A−n =−An.

Lattice sums

According to [26] and [27]

S0 =−1− 2i
π

[
C+ log

k
2p

]
− 2i

γ0L
− 2i(k2 +2q2)

p3L
ζ (3)− 2i

L

+∞

∑
m=−∞, m6=0

(
1
γm
− 1

p|m|
− k2 +2q2

2p3|m|3

)
,

(24)



and for n > 0

S2n =−
2ie−2inα0

γ0L
−2i

+∞

∑
m=1

(
e−2inαm

γmL
+

e2inα−m

γ−mL
− (−1)n

mπ

(
k

2mp

)2n
)
−

−2i(−1)n

π

(
k

2p

)2n

ζ (2n+1)+
i

nπ
+

i
π

n

∑
m=1

(−1)m22m(n+m−1)!
(2m)!(n−m)!

( p
k

)2m
B2m

(
q
p

)
, (25)

S2n−1 =
2ie−i(2n−1)α0

γ0L
+2i

+∞

∑
m=1

(
e−i(2n−1)αm

γmL
− ei(2n−1)α−m

γ−mL
+

i(−1)nqLn
m2π2

(
k

2mp

)2n−1
)
+

+
2(−1)nqLn

π2

(
k

2p

)2n−1

ζ (2n+1)− 2
π

n−1

∑
m=0

(−1)m22m(n+m−1)!
(2m+1)!(n−m−1)!

( p
k

)2m+1
B2m+1

(
q
p

)
, (26)

where Bm is the Bernoulli polynomial, γ = 0.577 is Eulers constant and for the sake of brevity
we define

p =
2π

L
, qm = q+mp, γm =−i

√
k2−q2

m, αm = arcsin
qm

k
. (27)
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