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Abstract: The hybrid plasmonic waveguide consists of a high-permittivity
dielectric nanofiber embedded in a low-permittivity dielectric near a metal
surface. This architecture is considered as one of the most perspective
candidates for long-range subwavelength guiding. We present qualitative
analysis and numerical results which reveal advantages of the special
waveguide design when dielectric constant of the cylinder is greater than
the absolute value of the dielectric constant of the metal. In this case the
arbitrary subwavelength mode size can be achieved by controlling the gap
width. Our qualitative analysis is based on consideration of sandwich-like
conductor-gap-dielectric system. The numerical solution is obtained by
expansion of the hybrid plasmonic mode over single cylinder modes and
the surface plasmon-polariton modes of the metal screen and matching the
boundary conditions.
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1. Introduction

The creation of the waveguides capable of guiding light with deep subwavelength confine-
ment is of great interest for practical applications. These devices may throw open the doors
to nanoscale optical communications, quantum computing, nanoscale lasers and bio-medical
sensing. The main problem on the way to practical realization is the diffraction limit of light
in dielectric media. Electromagnetic energy cannot be localized into nanoscale region much
smaller than the wavelength of light in the dielectric [1]. The possible solution to this problem
is using of the materials with negative dielectric permittivity. For example, metals are known
to exhibit this property below the plasma frequency. Metal structures provide guiding of the
surface plasmon-polaritons (SPP), which can be strongly localized near metal-dielectric inter-
faces [2]. However the propagation length of the strongly confined plasmonic modes is not
large enough due to the presence of Ohmic losses in the dissipative metal regions.

The new approach for this challenge integrates dielectric waveguide with plasmonic one. The
hybrid plasmonic waveguide consists of a high-permittivity dielectric nanofiber separated from
a metal screen by low-permittivity dielectric nanoscale gap [3]. Both the single fiber and the
silver-dielectric interface cannot provide strong mode confinement at optical and near infrared
frequencies, but such hybrid conductor-gap-dielectric architecture has experimentally demon-
strated deep subwavelength optical waveguiding [4]. Relatively large propagation distance has
been achieved due to low loss tangent tg = ε ′′m/ε ′m at the operating frequency and the specific
spatial structure of the guiding mode with field confinement within non dissipative gap region.

In the present paper we show that the hybrid plasmon polariton (HPP) mode confinement
can be considerably risen by a specific choice of the materials, when the dielectric constant of
the cylinder is greater than the absolute value of the dielectric constant of the metal screen. The
main advantage of the choice is the hyperbolic-like dependence of the effective index on the
gap width. This feature allows to achieve arbitrary subwavelength mode size at any frequency
by tuning the distance between the cylinder and the metal. To justify our approach we theoreti-
cally investigate propagation of the HPP-mode. First we give qualitative analysis basing on the
consideration of plane sandwich-like conductor-gap-dielectric waveguide structure (CGD) [5].
We derive exact analytical expression for effective index of the fundamental CGD-mode and
give criterion when the HPP-mode is CGD-like. Finally, we present semi-analytical approach
for describing of the HPP-mode propagation. Similar approach has been previously applied for
plane wave scattering by a cylinder placed near the plane surface [6, 7].

The scheme is based on expansion of the HPP-mode over single cylinder modes and the sur-
face plasmon polariton modes of the metal-dielectric interface and matching the boundary con-
ditions for electromagnetic field components. Numerically obtained dispersion relations con-
firm the advantages of our design of the hybrid waveguide. The results were verified by means
of the finite element method (FEM) using COMSOL.
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Fig. 1. a) Geometry of the waveguide; b) Plain waveguide with the same width of the
gap.

2. Qualitative description

The geometry of the hybrid waveguide is the following: a circular dielectric cylinder of diam-
eter d and permittivity εd is placed above a metal screen of permittivity εm. The width of the
gap between the cylinder and the metal screen is h, see Fig. 1(a). Let us choose the Cartesian
reference system as it is shown in Fig. 1: z-axis is directed along the waveguide, whereas x-axis
is directed normally to the metal screen. We consider a plasmon-polariton mode of frequency
ω and the propagation constant β propagating along z-axis. Thus, all electromagnetic field
components depend on time and z-coordinate as exp[iβ z− iωt]. We assume, that responses of
both dielectric and metal on electromagnetic field are described by dielectric constants, which
are εm and εd respectively. Generally, the outer medium may be not vacuum, but some dielec-
tric medium having dielectric constant being equal to εg. All the materials are assumed to be
nonmagnetic. To describe the mode confinement, it is convenient to introduce effective refrac-
tive index neff, which is defined as neff = β/k, where k = ω/c in the wavenumber in vacuum.
The effective index determines the field penetration depth into the material with permittivity

ε as 1/k
√

n2
eff − ε . The penetration depth of the bound mode should be real in the unbounded

waveguide constituents (metal and outer dielectric space), and may be imaginary for bounded
constituents (fiber). The greater neff is the stronger degree of confinement.

Optimization for transversal field confinement implemented in paper [3] for hybrid waveg-
uide shows that the thinner gaps provide higher localization. The fiber diameter is much greater
than the the gap width in the case, and the mode is sufficiently localized in the region where
the gap can be considered as approximately plain. In the region, the waveguide shape is close
to plain sandwich like conductor-gap-dielectric (CGD) structure, see Fig. 1(b). The limit of
plain CGD-model was considered in [5], where the properties of the bound fundamental mode
were investigated. One of the main advantage of the CGD-mode is that effective index of the
mode nCGD is greater than the refractive index of the dielectric

√
εd, nCGD >

√
εd. This implies,

that the electromagnetic field of the mode decays exponentially into the dielectric cladding.
Nevertheless, the analysis proposed in [5] is not applicable to HPP-mode of hybrid waveguide
with optimal diameter found in [3]. The reason is that the mode of plain CGD-model indeed
describes the HPP-mode only for large enough fiber diameter d otherwise HPP-mode should
be considered as a result of hybridization of surface plasmon polariton modes and the modes of
the single dielectric cylinder.

The main goal of the present work is to give the theoretical description of the hybrid waveg-
uide and to find approaches to deeper localization of the HPP-mode. Comparative analysis of
[3, 5] suggests, that in order to get stronger transversal miniaturization of the hybrid waveg-
uide the CGD-like regime of propagation (with neff >

√
εd) should be achieved for the diameter
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Fig. 2. Effective index nCGD of the CGD-mode versus gap width h for different metal per-
mittivity and critical gap width (εm;hc). The dielectric constants of the dielectric and gap
region are εd = 5.76 and εg = 1 respectively at wavelength λ = 490nm.

which is much less than free space wavelength. Our analysis of the plain CGD-structure shows
that the localization of the fundamental mode can be significantly risen for special set of mate-
rials, when absolute value of the metal dielectric constant is less than the dielectric constant of
the dielectric cladding, |εm|< εd. For the case, the effective refractive index nCGD is proportional
to inverse width of the gap, nCGD ∝ 1/kh, when the width h is small enough. To use the same
effect for the hybrid waveguide, the cylinder diameter should sufficiently exceed some critical
value d∗, which is determined by the condition that the transversal size of the plain part of the

gap is comparable with the mode penetration depth into the dielectric 1/k
√

n2
eff − εd . The size

of the plain part of the gap is evaluated as 2
√

hd, thus the condition is 2
√

hd∗ ≈ 1/k
√

n2
eff − εd .

For d greater enough than d∗ the guiding mode can approach the strongly confined mode of
the sandwich like system even if the diameter of the cylinder is much less than free space
wavelength.

In order to give general physical argumentation of our results let us consider planar sandwich-
like CGD-waveguide in detail. The wave vector of fundamental CGD-mode (which is TM-
mode) can be calculated from equation [5]

exp[2hκg] =
(εdκg − εgκd)(εmκg − εgκm)

(εdκg + εgκd)(εmκg + εgκm)
, (1)

where κi = k
√

n2
CGD − εi for each material, i = m,g,d and nCGD is the effective index of the

mode. In particular, 1/κd and 1/κm are the penetration depths into the dielectric and the metal
correspondingly. It is known that such plane three-layer waveguide supports the propagation of
the bound eigen mode only if the width of the intermediate layer is less than some cut-off value
hc which is determined by the permittivities at given frequency

hc =
λ

4π√εd − εg
log

εm
√εd − εg − εg

√
εd − εm

εm
√εd − εg + εg

√
εd − εm

. (2)

When the thickness exceeds this critical value the fundamental CGD-mode becomes radiative
with energy leaking into upper dielectric half space.
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Fig. 3. Effective refractive index of the fundamental hybrid mode versus cylinder diameter
d (coloured lines) compared with those of single fiber (black solid line) and SPP mode
(lower black broken line). The upper black broken line corresponds to the refractive index
of the cylinder. The dielectric constants of the cylinder, dielectric and metal are εd = 12.25
εg = 2.25 and εm =−129+3.3i respectively at wavelength λ = 1.55μm. These parameters
are chosen in accordance with the paper [3]. The critical gap width hc = 5nm. The HPP-to-
CGD crossover point: d∗ ≈ 17μm for h = 2nm.

There is a significant difference between the dependence of the effective index nCGD on the
gap thickness h for the cases of low and high index dielectric, see Fig. 2. For relatively low
refractive index of dielectric, εd < |εm|, there exists surface plasmon-polariton mode when the
gap is absent, h = 0. It has effective index nmd =

√
εmεd/(εd + εm). Then the effective index

of the fundamental CGD-mode is bounded,
√

εd < nCGD < nmd. Just the case was considered in
the papers [5] and [3]. Otherwise when permittivity of dielectric is relatively high

εd > |εm|> εg, (3)

the effective index nCGD unlimitedly diverges as the gap thickness tends to zero, h � λ/
√

εd:

nCGD ≈ 1
2kh

ln
(εd − εg)(εm − εg)

(εd + εg)(εm + εg)
. (4)

This leads to extremely strong light confinement in a transparent dielectric gap layer located be-
tween the high-index dielectric and the conductor. The actual degree of localization is restricted
only by additional factors, such as increasing Ohmic losses in the metal, spatial dispersion and
atomic structure of the materials. In this respect the properties of the conductor-gap-dielectric
plasmonic mode similar to that of the gap plasmon polaritons in a conductor-gap-conductor
structure [8, 9]. This feature is the principle behind our idea: in practice one should choose the
metal of the absolute permittivity less than the permittivity of the cylinder and place cylinder
at distance h < hc from the metal plane. When such metal is involved the effective index of the
HPP mode can be significantly greater than effective index of electromagnetic field in bulk ma-
terial of the cylinder even for very small diameters of the cylinder. Note, that to calculate group
velocity vg and chromatic dispersion for the mode using the formula (4), one should know the
dispersion laws for permittivities εm and εd. For thin gap h � hc, the group velocity scales as
vg/c ∝ h/λ . Thus divergence of the CGD-mode effective index with the gap width decreasing
leads to strong reduction of the group velocity.

#182964 - $15.00 USD Received 8 Jan 2013; revised 2 Mar 2013; accepted 4 Mar 2013; published 18 Mar 2013
(C) 2013 OSA 25 March 2013 / Vol. 21,  No. 6 / OPTICS EXPRESS  7431



There is reverse side of the strong localization which is small propagation distance. It was
shown in paper [3] that the strongest localization of the HPP-mode corresponds to the low-
est propagation length. It is common place of waveguides which use metal as a constructive
component. Let us consider limit when the gap index is low, so εg � |εm|. For the case

nCGD ≈ 1
kh|εm|

(
1− |εm|

εd
+ i

ε ′′m
|εm|

)
, (5)

where ε ′′m is the imaginary part of the metal permittivity. It follows from Eq. (5), that the lo-
calization radius is of the order of h|εm| in the limit h � hc. Note, that our approach allows to
squeeze the mode at arbitrary frequency into any subwavelength scale simply by tuning the gap
width in accordance with (4). Hence, our waveguide design breaks connection between mode
localization and the carrying frequency of the mode. In particular, the approach may be interest-
ing for design waveguides at THz frequencies [10, 11]. The propagation length � ∼ h|εm|/|tg|
i.e. reduces with the mode size reduction. To keep the propagation length acceptable for practi-
cal implementation at fixed degree of localization one should minimize loss tangent tg. Thus, a
prospecting like [12] is needed to propose the optimal choice of materials for our approach (3).

3. Semi-analytical description and numerical results

In the section, we present the semi-analytical approach to the propagation of the HPP-mode
and discuss the numerical results. It follows from Maxwell’s equations that the electromagnetic
field of guiding mode can be fully described by z-components of the electric and the magnetic
fields, Ez and Bz [13]. These fields satisfy the following two-dimensional Helmholtz differential
equation inside the homogeneous areas where permittivity is constant:

Δ⊥
{

Ez

Hz

}
− (

β 2 − εk2)
{

Ez

Hz

}
= 0, (6)

where Δ⊥ = ∂ 2
x + ∂ 2

y and k = ω/c is the free space wavenumber. The boundary conditions on
the both interfaces are continuity of components Ez, Hz, εEξ and Hξ , where ξ -component of a
vector is its normal component.

Our semi-analytical method is based on the representation of the hybrid waveguide as an
integration of the dielectric fiber and plane plasmonic waveguide. We express the electromag-
netic field of the HPP-mode as a linear combination of cylindrical modes around the fiber and
evanescent plane waves above the metal screen. Boundary conditions provide the system of lin-
ear equations on the expansion coefficients. Such an approach leads to highly efficient method
of numerical solving a difficult boundary-value problems that describe the propagation of waves
in a complex systems [14, 15]. The scheme is developed in detail in Appendix A.

To verify our semi-analytical method, in Fig. 3 we present the dependence of the effective
index of the fundamental hybrid mode on the cylinder diameter d for a range of the gap widths h
in the case of telecommunication wavelength when εg < εd < |εm|. These dispersion curves are
obtained from our numerical procedure and show a good agreement with the results obtained
in [3] by using finite-element package FEMLab from COMSOL.

In accordance with general argumentation given in Section 2 we next present two sets of
plots. Fig. 4(a) corresponds to the case of fiber with comparatively low refractive index, εd <
|εm|, the parameters of the waveguide are taken accordingly to experimental work [16]. Fig. 4(b)
corresponds to opposite limit, when εd > |εm|. Parameters of these two plots differ only for
metal permittivity εm, the value εm = −4 is chosen for Fig. 4(b). Here, we do not concretize
the material of the metal screen, our goal is just to demonstrate the qualitative difference of the
guiding mode properties for the case (3).
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Fig. 4. Effective refractive index of the fundamental hybrid mode versus cylinder diameter
d (coloured lines) compared with those of single fiber (black solid line) and SPP mode
(lower black broken line). The upper black broken line corresponds to the refractive index
of the cylinder. (a) The dielectric constants of the cylinder, dielectric and metal are εd =
5.76, εg = 1 and εm =−9.2 respectively at wavelength λ = 0.49μm. These parameters are
chosen in accordance with the paper [16]. The critical gap width hc = 7nm. The HPP-to-
CGD crossover points are: d∗ ≈ 310nm for h = 2nm , d∗ ≈ 875nm for h = 5nm. (b) The
dielectric constants of the cylinder, dielectric and metal are εd = 5.76, εg = 1 and εm =−4
respectively at wavelength λ = 0.49μm. The critical gap width hc = 13,4nm. The HPP-to-
CGD crossover points (black arrows) are: d∗ ≈ 40nm for h= 2nm, d∗ ≈ 65nm for h= 5nm,
d∗ ≈ 220nm for h = 10nm.

Presented results indicate that when fiber diameter d is decreased, the HPP-mode loses con-
finement along the metal and eventually (at d = 0) becomes a surface plasmon-polariton mode
of the flat metal-vacuum interface. Herewith the effective index of the HPP-mode monotoni-
cally decreases to that of this SPP-mode. Thus all dispersion curves have the same asymptotic
neff → nmg =

√
εmεg/(εm + εg) at small d. Two different behavior are possible at the oppo-

site limit of large diameter. As the diameter d → ∞, the HPP-mode can asymptotically tend
either fundamental single fiber mode or the fundamental mode of the planar three-layer system,
the choice depends on the gap width h. If the gap thickness h is below than hc (Eq. (2)) the
HPP-mode approaches the CGD-mode with the diameter increasing. In the case the crossover
between the asymptotics occurs at d∗ (black arrows at Fig. 4(b)) which is determined as

d∗ ≈ 1

4(n2
CGD − εd)hk2

. (7)

For h > hc the HPP-mode becomes the cylinder-like in the limit of the large diameter. In
the case the critical diameter d0 corresponding to the transition between small-diameter and
large-diameter asymptotics is defined by the equation nSF(d0) = nmg, where nSF(d) is the diam-
eter dependence of the effective index of the single fiber fundamental mode. If the condition√

εdkd � 1 is valid one can derive that the localization of this mode is exponentially small,
nSF =

√εg +κ2
g/(2

√εgk2), where

κ2
g/k2 ≈ 16e−2γ+1

(kd)2 exp

{
− 8(εd + εg)

εg(εd − εg)(kd)2

}
� 1, (8)

and γ = 0.5772... is Euler-Mascheroni constant.
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Fig. 5. Spatial distribution of the time-average z-component of the Poynting vector Sz(x,y)
for the fundamental HPP-mode. The diameter of the cylinder is d = 120nm and the gap
width is h = 2nm. The dielectric constants of the cylinder and dielectric are εd = 5.76 and
εg = 1 respectively at wavelength λ = 0.49μm. (a) The dielectric permittivity of the metal
is εm =−9.2, (b) εm =−4.

Let us suppose the effective index nCGD of the CGD-mode not to be significantly above that of
bulk plane wave in the fiber medium,

√
εd . For example, this assumption is true at the conven-

tional plasmonic condition when the absolute value of metal permittivity is sufficiently greater
than the dielectric permittivity, |εm|> εd. Just the case is realised at Fig. 3 and Fig. 4(a). Then
the field penetration depth into the upper dielectric is quite large as well as the HPP-to-CGD
crossover diameter d∗ > λ , so the CGD-mode does not provide the strong confinement. There-
fore there are no advantages of CGD-like limit in the case from the view of HPP-mode con-
finement. For a given frequency and gap width the choice with the strongest coupling of the
fiber mode and the surface plasmon polariton mode, corresponding to d = d0, provides the
strongest localization of the field within nanogap due to the great contrast of permittivities [3].
The Fig. 5(b) visualises the spatial distribution of the time-average Poynting vector for the
optimum value of the diameter and h = 2nm. At the same time significant part of energy is
transferred inside the fiber, thus the waveguide mode confinement is achieved largely due to the
boundedness of the high-permittivity dielectric part of the waveguide. Once the diameter of the
fiber is optimum and the gap width is small enough the advantages of the hybrid architecture
are used completely: cross section size of the system can be much less than the wavelength and
mode confinement is much stronger than for uncoupled single fiber or flat metal-dielectric inter-
face. To achieve further increase of the HPP-mode confinement the fiber with higher dielectric
constant should be used.

Next let us assume that effective index of the CGD-mode is significantly larger than the re-
fractive index of the fiber medium. This can be achieved by diminishing the gap thickness in the
case |εm| < εd that corresponds to the Fig. 4(b). Then the CGD-mode has strong confinement
so the crossover diameter can be decreased to deep subwavelength scale, d∗ � λ , by tuning the
gap width. Therefore the attractive CGD-like asymptotic can be achieved by HPP-mode with
very small diameter of cylinder providing the wished structure of the mode with the strong
transversal localization in two dimensions within the gap region and exponential decaying into
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Fig. 6. The fundamental HPP-mode’s propagation distance in dependence on cylinder di-
ameter (coloured lines) compared with propagation distance of pure SPP-mode at metal-
dielectric interface (black broken line). The dielectric constants of the cylinder, dielectric
and metal are εd = 5.76, εg = 1 and εm =−4+0.1i respectively at wavelength λ = 0.49μm.

the cylinder. The example of the spatial distribution of the time-average Poynting vector is rep-
resented in Fig. 5(b). Note that in the case the top part of the fiber cross section is at distances
much larger than 1/κd from the gap and its particular shape does not play role any more. As
it was mentioned above the propagation distance decreases with the gap width decreasing, see
Eq. (5). We present the results of simulation performed by using the COMSOL commercial
software package in Fig. 6. The ultra-small mode confinement leads to storage of the large
portion of the electromagnetic energy within dissipative metal region. Thus the stronger local-
ization corresponds to the shorter HPP-mode’s propagation length.

4. Conclusion

In the paper we have proposed the novel approach for hybrid plasmonic waveguide design pro-
viding wide opportunities for HPP-mode property controlling. When the absolute permittivity
of the metal is less than that of the dielectric the hybrid effective index is unlimitedly diverges
(Eq. (4)) with the gap width decreasing. High effective index provides strong confinement of
the electromagnetic field in two dimensions within the nanometer-scale gap region. Thus the
mode size can be simply controlled by tuning the waveguide’ geometry at fixed frequency and
materials constituting the waveguide. The advantages of the case |εm| < εd are confirmed by
both qualitative analysis within planar three-layer model and rigorous semi-analytical method
describing the HPP-mode propagation in general. The propagation distance of hybrid mode
reduces with the mode size reduction. To achieve long-range propagation at fixed degree of
localization one should minimize loss tangent tg = |ε ′′m/ε ′m| of the metal. It should be noted that
simultaneous satisfying of both conditions |εm| < εd and tg � 1 at optical and near infrared
frequencies is a challenging task. Thus implementation of the waveguide loss compensation
techniques would be required to use such hybrid waveguide as a component of the miniatur-
ized photonic circuits. Another potential application of our waveguide design lies in study field
of the resonant plasmons. The resonance condition for a surface plasmon-polariton at a pla-
nar metal-dielectric interface is the fine-tuning of the permittivities, −(εm + εd) � εd [17].
Thus for particular metal the resonance can be achieved only in a narrow spectral range. While
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Fig. 7. Reference system.

resonant increasing of the CGD-mode effective index requires only the geometrical condition
h � λ . Thus for the conductor-gap-dielectric structure the resonance of plasmonic mode can
be attained by gap width decreasing at any frequency as long as the condition |εm|< εd is valid.

A. Numerical method

The theoretical description of the hybrid waveguide is inhibited by its complex geometry. In
general we should chose such system of coordinates where the surfaces of the waveguide are the
isolines and Helmholtz equation can be solved by separation of variables. The hybrid geometry
corresponds to the so called bipolar coordinates based on two sets of orthogonal circles. In this
coordinate system the Helmholtz equation has quite complicated form and accordingly the set
of eigen functions cannot be found analytically. However the unknown hybrid eigen functions
can be expressed in terms of known solutions of the Helmholtz equation in other coordinate
systems. It is convenient to represent the total electromagnetic field of HPP-mode as the super-
position of the all modes of single fiber(cylindrical functions) and all SPP modes(evanescent
plane waves) with some unknown coefficients of expansion.

We chose the Cartesian system of coordinates with origin at axis of the cylinder which is
z-axis (Fig. 7). Supposing the structure of the fundamental hybrid mode to be symmetric with
respect to x-axis we can describe the longitudinal component of the electric field as

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

E(d)
z = ∑∞

n=0 aE
n Jn(χdr)cosnϕ

E(g)
z = ∑∞

n=0 bE
n Kn(κgr)cosnϕ+

+
∫ ∞

0 cE
q exp(Qκg(x−D))cosqκgy dq

E(m)
z =

∫ ∞
0 dE

q exp(−Qκm(x−D))cosqκmy dq

(9)

and z-components of the magnetic field as

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

H(d)
z = ∑∞

n=0 aH
n Jn(χdr)sinnϕ

H(g)
z = ∑∞

n=0 bH
n Kn(κgr)sinnϕ+

+
∫ ∞

0 cH
q exp(Qκg(x−D))sinqκgy dq

H(m)
z =

∫ ∞
0 dH

q exp(−Qκm(x−D))sinqκmy dq

(10)

where Q =
√

1+q2 and D = d/2+h.
To write the corresponding equations, it is convenient to express the field inside dielectric

in terms of only plane evanescent waves, when we impose the continuity conditions on the
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boundary of the metal, and in terms of angular harmonics, for the cylindrical surface. We solve
it by using the evanescent plane wave expansion of modified cylindrical functions and angular
harmonic spectrum of the evanescent plane waves [18]

Kn(κgr)cosnϕ =
∫ ∞

0
FE

n (q)e−Qκgx cosqκgy dq, (11)

Kn(κgr)sinnϕ =
∫ ∞

0
FH

n (q)e−Qκgx sinqκgy dq, (12)

eQκgx cosqκgy =
∞

∑
n=0

GE
n cosnϕ, (13)

eQκgx sinqκgy =
∞

∑
n=0

GH
n sinnϕ, (14)

where

FE
n =

(Q+q)n +(Q−q)n

2Q
, (15)

FH
n =

(Q+q)n − (Q−q)n

2Q
, (16)

GE
n =

2−δ0n

2
((Q+q)n +(Q−q)n)In(κgr), (17)

GH
n = ((Q+q)n − (Q−q)n)In(κgr). (18)

Thus the electromagnetic fields in surrounding medium close to the dielectric waveguide can
be written as

E(g)
z =

∞

∑
n=0

bE
n Kn(κgr)cosnϕ +

+
∞

∑
n=0

cosnϕ
∫ ∞

0
cE

q GE
n (r,q)e

−QκgD dq,

H(g)
z =

∞

∑
n=0

bH
n Kn(κgr)sinnϕ +

+
∞

∑
n=0

sinnϕ
∫ ∞

0
cH

q GH
n (r,q)e

−QκgD dq.

The corresponding expressions for the fields close to the surface of the metal are

E(g)
z =

∫ ∞

0

∞

∑
n=0

bE
n FE

n (q)e−Qκgx cosqκgy dq +

+
∫ ∞

0
cE

q eQκg(x−D) cosqκgy dq,
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H(g)
z =

∫ ∞

0

∞

∑
n=0

bH
n FH

n (q)e−Qκgx sinqκgy dq +

+

∫ ∞

0
cH

q eQκg(x−D) sinqκgy dq.

It can be easily derived from the Maxwell’s equations that for the normal components

Eξ = − iβ
β 2 − εk2

∂Ez

∂ξ
+

ik
β 2 − εk2

∂Hz

∂η
, (19)

Hξ = −ε
ik

β 2 − εk2

∂Ez

∂η
− iβ

β 2 − εk2

∂Hz

∂ξ
, (20)

where η is tangent to the interface coordinate in the transversal plane.
The continuity conditions on the metal surface for Ez, Bz, εEx and εBx lead to the first system

of linear homogeneous equations (SLE) on coefficients bE
n , bH

n , cE
q , cH

q , dE
p , dH

p . The correspond-
ing continuity conditions for Ez, Bz, εEr and εBr on the cylindrical surface produce the second
SLE on amplitudes aE

n , aH
n , bE

n , bH
n , cE

q , cH
q , which is now integral with respect to cE

q , cH
q . In order

to avoid integration of the unknown functions we express the coefficients cE
q , cH

q in the terms of
bE

n , bH
n from the first SLE and substitute them into the second SLE. The procedure leads to the

infinite system of linear homogeneous algebraic equations for coefficients aE
n , aH

n , bE
n , bH

n . In or-
der to solve the system numerically one should truncate it to a finite size. Then the propagation
constant of the fundamental hybrid mode can be determined from the condition of vanishing of
the characteristic determinant.
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