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We analyze a solenoidal motion in a vertically vibrated freely suspended thin smectic film. We demonstrate
analytically that transverse oscillations of the film generate two-dimensional vortices in the plane of the film
owing to hydrodynamic nonlinearity. An explicit expression for the vorticity of the in-plane film motion in
terms of the film displacement is obtained. The air around the film is proven to play a crucial role, since it
changes the dispersion relation of transverse oscillations and transmits viscous stresses to the film, modifying
its bending motion. We propose possible experimental observations enabling to check our predictions.
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1. INTRODUCTION

An interplay between vortical and wave motions is
one of the most exciting and longstanding problem in
hydrodynamics. We analyze this phenomenon for the
case of freely suspended thin liquid films. On scales
larger than the film thickness, such film can be con-
sidered as a two-dimensional system embedded into
three-dimensional space. In comparison with tradi-
tional two-dimensional systems, such films possess an
additional degree of freedom associated with their
bending distortions. Therefore, in addition to the
usual in-plane hydrodynamic modes an extra mode
can be exited in the freely suspended films associated
just with the bending motion. The nonlinear interac-
tion of the bending motion with the in-plane hydrody-
namic flows gives rise to generation of the solenoidal
in-plane motion by the bending waves. We examine
the phenomenon in our work.

One of widely known type of liquid films that can
be freely suspended are soap films. They are consid-
ered as a model system providing an opportunity for
testing two-dimensional hydrodynamic theory [1].
However, the detailed analysis has shown that the
fluid motion in soap films is more complex and that a
relation to motion described by the two-dimensional
hydrodynamic equations is not straightforward [2].
The generation of a vortical motion in vibrating soap
films has a long history. It was first observed by Taylor
more than a century ago [3]. Quantitative experiments
were carried out at the end of the 20th century, see,
e.g., [4, 5], and a qualitative theoretical analysis is pre-
sented in the paper [6]. To our knowledge, there is no
quantitative theory of the phenomenon nowadays.

! The article is published in the original. See the supplemental
material for this paper at www.jetpletters.ac.ru.
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In our work, we consider freely suspended thin
smectic films, see, e.g., [7, 8]. Smectic liquid crystals
are remarkable layered materials, which can form a
rich variety of structures. The simplest smectic struc-
ture is the smectic A phase, which is solid-like in the
direction perpendicular to the layers and fluid-like
within the layers. The smectic C and hexatic liquid
crystals possess orientationally ordered layers. Any
case, the smectic liquid crystal can be thought as a
stack of fluid layers. Due to this layered structure thin
films of the smectic liquid crystals consisted of a num-
ber of layers can be formed. Such films can be easily
pulled from a reservoir of the substance. Due to the
absence of the crystalline order inside the smectic lay-
ers, such films can be treated as two-dimensional flu-
ids. We develop a theory for the simplest case of the
smectic A films. However, it can be easily generalized
to the smectic C and hexatic films.

In our mind there are no reports about the vorticity
generation in oscillating smectic films up to the date,
while their transverse (bending) oscillations are well
studied [9, 10]. Fortunately, dynamics of the smectic
films is simpler than one of the soap films since there
is no analog of Marangoni waves [5] in the case. It
allows us to construct a quantitative theory of the phe-
nomenon. We consider and compare two cases, the
film surrounded by vacuum and by air. It turns out that
the air environment plays an important role in the film
dynamics. The vortical fluid motion in the film
appears due to nonlinear interaction of the bending
waves, which is taken into account in the framework of
perturbation theory. Thus, our consideration is correct
for sufficiently small amplitudes of transverse oscilla-
tions. We also discuss qualitatively the case of strong
nonlinearity.



202

2. FILM IN VACUUM

Let us describe dynamical properties of a freely sus-
pended thin film, pulled from the bulk smectic A
phase. Such film is an isotropic two-dimensional sys-
tem, as we treat it on scales larger than the film thick-
ness. We assume that in equilibrium the film is parallel
to the X—Y plane and that its bending distortions are
characterized by the displacement A(z, x, y) of the film
in the Z-direction; i.e., the film shape is determined by
the equation z = A(¢, x, y). The unit vector perpendic-

ular to the film is 1 = (=d,h, —0,h, 1)/\/5, where g =

1 + (Vh)? can be thought as the determinant of the
film metric tensor.

The film state is described in terms of the film mass
density p(#, x, y) and of the film momentum density
j(#, x, y). Both these quantities are two-dimensional
densities of the film projection to the X—Y plane. The
dynamic equations for the film displacement 4 and for
the mass density p are [10]

path = jz - jaaah’ atp = _aaja- (1)

Here and below, Greek indices run over x, y. The first
equation in (1) is the kinematic condition implying
that the film moves with the velocity v = j/p, and the
second equation is the mass conservation law.

Equation (1) should be supplemented by the equa-
tion for the momentum density j of the film. First, we
consider the film surrounded by vacuum. In the case
the momentum is conserved, the corresponding equa-
tion reads [10]

i = =00(Vej; — Vg0 — JeMipndpva)s  (2)

where Latin subscripts run over x, y, z and Si =0, —
1, stands for the projector to the film, and o is its sur-
face tension. As above, all quantities are assumed to be

functions of 7, x, y. The viscosity tensor can be written
as [10]

Niam = (§ =887, + NS85 + 810%).  (3)

Here, n > 0 and € > 0 are two-dimensional analogs of
the three-dimensional first (shear) and second (bulk)
viscosity coefficients. Egs. (1)—(3) constitute a closed
system of nonlinear equations that describe the film
dynamics.

We assume that the film bending distortion is weak,
|[Vh| < 1. All other quantities characterizing the film
are assumed to deviate weakly from their equilibrium
values as well. Then one can use the perturbation
series in examining the film distortions. In the linear
approximation, there are two sound-like modes [11].
The first one is the bending sound associated with the
bending distortions of the film. In the mode, each film
element oscillates in the direction transverse to the
film. The bending sound propagates with the velocity

¢, =+0,/py, Where py and o, are equilibrium values of
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the two-dimensional mass density p and of the surface
tension o, respectively.

The second mode is the longitudinal sound, which
is associated with fluctuations of the two-dimensional
mass density p and does not disturb the film shape.

The sound propagates with the velocity ¢, = /—dG/dp.
Further, we assume that the longitudinal sound is not
excited by the pumping force directly.

The linear equation for the bending sound reads

07 h+280,h—c;V’h =0, 4)

where the operator & determines the sound attenua-
tion. If the freely suspended film is surrounded by vac-
uum then the bending mode has an anomalously weak
attenuation, the property is related to the rotational
symmetry of the system [10]. Particularly, there is no
contribution to the attenuation a caused by the film
viscosity (3). There are some other contributions to
the attenuation. First, there is a contribution of higher
order in V, proportional to V4. Second, there is a con-
tribution related to the thermal fluctuations [10], it is
caused by the nonlinear interaction of the fluctua-
tions. However, for films of the thickness of about
hundred layers, we have in mind, the fluctuation con-
tribution is relatively weak. In addition, there is a con-
tribution to the bending mode attenuation a related to
processes in the meniscus. The contribution needs an
additional investigation and it is beyond the scope of
present work.

Our goal is to describe the in-plane vortical (sole-
noidal) motion generated by the bending motion
owing to nonlinear effects. The in-plane solenoidal
motion is characterized by the vertical component of
the vorticity @, = d,v, — d,v,. In the linear approxima-
tion @, is zero, that is one should go beyond the linear
approximation to find ©,. We calculate the main non-
linear contribution to @,, which is of the second order
in the film displacement 4. The starting point of the
calculation is Eq. (2), one should take its curl and proj-
ect it to the Z-direction. Then one obtains an equation
form,:

P, @, ~NV’®, = 04€3,0410,V°h

’ (5)
+ TNep,dp0, AV h),

where €4 is the unit two-dimensional antisymmetric
tensor.

Let us analyze a steady contribution to the vorticity
®@,. Averaging over time Eq. (5), one finds

VB, = (00/Mep, (3,505 °h), (6)

where angle brackets designate time averaging. At the
next step, we use the linear equation for the bending
sound (4) to obtain

B, = 2po/Mep,V (0,40, Guh). (7)
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Let us stress that Eq. (7) is proportional to the attenu-
ation of the bending sound.

3. AIR ENVIRONMENT

Here, we consider the case where the freely sus-
pended smectic film is surrounded by air and analyze
its influence on the film dynamics. As previously, we
assume that some pumping force excites the bending
oscillations. One can think about sound as the pump-
ing source, the corresponding experimental technique
is described in [12]. It is well known that the air around
the soap film considerably changes its dynamics.
Inspired by papers [5, 6], we consider an influence of
air to the motion of the thin smectic film and, partic-
ular, to the mechanism of the vorticity generation.

We assume that the air sound velocity ¢, is much
larger than c,. This assumption is reasonable since

cf = 0,/py is inversely proportional to the number of
the smectic layers in the film, and we have in mind the
film consisting of about hundred layers. At the condi-
tion ¢, > ¢, the air motion can be described in terms of
the three-dimensional Navier—Stokes equation [13],
supplemented by the incompressibility condition
divv = 0, where v is the air velocity.

The film separates two regions of space filled with
air. In the presence of air, Eq. (2) has to be modified,
since the air influences the liquid motion in the film.
The stress tensor in the air is

Gy = —POy + PV, (0,v; +0;vy), ()

where p, and v, are the air mass density and its kine-
matic viscosity coefficient, respectively, and p is pres-
sure. Then, the correct dynamic equation for the film
is [13]

. . 1
at]i = _aoc(vocji - \/gcaioc - \/Eni(xﬁma[ivm)
+/g(Gix = Gi )
where the unit vector 1, normal to the film, is pointed
out from the region I (z < 4) to the region II (z > h).
Note that the velocity of air v is continuous in the
whole space and it coincides with the film velocity at
the film surface. Equation (9) can be treated as the

boundary condition for the three-dimensional air
motion.

)

The air motion around the film can be easily ana-
lyzed in the linear approximation. Exploiting the
Navier—Stokes equation and the boundary condi-
tion (1), one obtains [11]
RETK) (o _ p7ieyy gy (10)

v(X = $\/O(

v, =V (R + £) (Re™ — k™), (11)

where the upper/lower signs correspond to the regions
II/I and we have introduced the following (non-local)
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operators k = (—9> — ai)l/z, & =(9,/v, + k»)V2 The
first terms in Egs. (10), (11) correspond to the poten-
tial part of the velocity, while the second terms belong
to its solenoidal part. Further, we assume that the air
viscous term is weak in comparison with the frequency
o of the external force, that is

Y=V ko<, (12)

where k is the wave vector of the bending mode excited
in the film. Then the vortical (solenoidal) velocity is
located in a much thinner layer of depth 1/x ~ /||
than the potential one, penetrating to the length |k|~!.

Hereinafter, we assume that the bending mode
decay is supplied mainly by the air viscosity, which is
correct if [k|~! is much larger than the film thickness.
Then the bending dispersion law is [11]

. 2
o’ = o (1 —ﬂ@)), ol =Skl g3
V2 Po +2p./Ik]
where © = (1 + pylk|/2p,)~". The term 2p,/|k| corre-
sponds to the associated mass of air involved into the
bending motion of the film. The factor 1/|k| in 2p,/|k]|
stands for the penetration depth of the air potential
velocity. Expression (13) is obtained under condi-
tion (12).
Now we turn to the vorticity @ = curl v. The bulk
equation can be obtained by taking the curl of the
Navier—Stokes equation [13], it is

9,0 = @V - vV + v, V6. (14)

In the linear approximation, the vertical component of
the vorticity, @, is zero, it is generated due to nonlin-
earity. As before, we are interested in a contribution to
@, that is independent of time. Using Eq. (14) and
averaging over time one finds

@ - k)®, = v, (®,0,v.). (15)

The term in the right hand side of the equation is a
source for @_. Equation (15) has to be supplemented by
the boundary condition (9). The internal film viscos-
ity n can be estimated as n ~ n,d, where d is the thick-
ness of the film and 7, is the dynamic viscosity coeffi-
cient of the bulk smectic. Thus, the term with the film
viscosity can be neglected for sufficiently thin films,
0,V,/M > |k|. Then, using Eq. (9), we obtain

(00)"-@.m)")=0. (16)

Condition (16) should be posed at z= 0. A solution of
Egs. (15), (16) is

K ke Fhz
O, =€ 5{|=e0 h)e 050 h>
z ofd <(k o BYr (17)
HV K) ™ ey (671050, 10,0 h).
Similar to the case of the film surrounded by vacuum,

the last term in Eq. (17) is non-zero only if one takes
into account the attenuation of the bending mode. For
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this reason, in calculations we have kept two first terms
of the expansion in parameter y. As a result, we have
obtained the first term in Eq. (17). Details of the cal-
culations can be found in [11].

4. DISCUSSION

We considered the case, where bending oscillations
of the freely suspended smectic film are excited by an
external pumping. We had in mind the situation where
the pumping has frequencies in a narrow frequency
range. Then some steady vortical (solenoidal) motions
are excited in the film due to nonlinear effects. We
developed a quantitative theory enabling one to obtain
an explicit expressions (7) or (17) for the vorticity of
the film surrounded by vacuum and by air, respec-
tively. Note that Eq. (17) is correct when the air sur-
rounding the film essentially influences the film
dynamics. Particularly, the bending dispersion law is
strongly modified in comparison with the sound one

® =+0,/pok, see Eq. (13).

Now, we analyze Eqgs. (7) and (17) to calculate the
vertical steady vorticity @, of the film for some specific
case, where the film is bounded by a rectangular frame
with dimensions L, and L, and a monochromatic
pumping is applied to the film. Then the modes of the
system are standing waves, which have zero displace-
ment at the edges of the frame. Let us consider a
superposition of two standing bending waves excited
by the external pumping. Thus, we assume the film
displacement to be

h = H,sin(k,x)sin(k,y)cos(mr)

18
+ H,sin(g,x)sin(g,y)cos(w? + ¢), (18)
where ki + ky2 = qi + qi = k2, and the absolute value
of the wave vector £ is determined by the frequency
of the external force via the resonance condition ® =
cpk or (13).

Taking into account the attenuation of the mode,
and using Eq. (7), we obtain the steady vorticity at the
film embedded in vacuum
o, = %leHzle_2 sin¢

n

Z

X [k,q, sin(k,x)sin(g,y)cos(q,x)cos(k,y)  (19)

— k.q,cos(k,x)cos(q,y)sin(g,x)sin(k,y)].

Above, we discussed different mechanisms contrib-
uted to the attenuation constant a. Because of uncer-
tainty in the relative effectiveness of the mechanisms,
we do not know the dependence of the constant a on
the wave vector k. The obtained vorticity @, is propor-
tional to the attenuation constant; therefore, we con-
clude that the experimental study of the generated vor-
ticity would provide a useful information concerning
the attenuation of the transverse oscillations of the
film surrounded by vacuum.
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Fig. 1. (Color online) Spatial distribution of the steady
vorticity @, for two standing waves (18). For all cases, the
second dimension of the frame is L, = st. The other param-
eters are shown in the figure.

In the case of the film embedded in air, we can
obtain the attenuation constant from the dispersion

law (13), a = wy®/2\/§, and using then Eq. (17) we
find the film vorticity
oHH O, r-1) .
®.(0 :#(1+—kk )sm
:(0) 5 5 |k] 0

X k,q, sin(k,x)sin(q,y)cos(q,x)cos(k,y) (20)

— k.q, cos(k,x)cos(q,y)sin(q,x)sin(k,y)].

Let us stress that both answers, (19) and (20), are pro-
portional to sin¢, where ¢ is a phase shift between the
standing waves.

Next, we consider the film stretched in a nearly
square frame. It this case, k, = g,, k, = g, and we deal
with two degenerate modes. If the frame is perfectly
square, then sin¢ = 0 and there is no steady vorticity.
However, slightly changing the aspect ratio of the
frame one can produce the phase shift between the
modes and the vertical vorticity becomes non-zero.
When passing through the “point of compensation”
the vorticity changes its sign. Some possible spatial
vorticity distributions are presented in Fig. 1. They
were obtained numerically from Eq. (20) in the limit
® — 1. The vorticity found from Eq. (19) has similar
spatial dependence.

In the end, let us formulate an applicability condi-
tion of our theory. It is correct when high-order non-
linear terms are smaller than the kept ones. In the case
of the film surrounded by air, we have to estimate the
nonlinear terms in Eq. (14), where the second-order
terms for the velocity, v{?, have to be taken into
account. It follows from Eq. (17) that v? ~ wkh?/y.
Therefore the nonlinear terms with v*? are small if
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(V@V)®, < VAw,. Thus, we arrive at the condition

kh < v*?, that is stronger than the small tilt condition
kh<1.

5. CONCLUSIONS

To summarize, we have examined the nonlinear
mechanism of the vorticity generation in thin freely
suspended smectic 4 films. We have considered two
cases, where the film is surrounded by vacuum and by
air. In the first case, the generated vorticity appears to
be sensitive to the attenuation of the bending sound.
We have obtained explicit formula (7) for the steady
vorticity and speculated that an experimental study of
the vorticity would provide a useful information about
the anomalously weak attenuation of the bending
sound. In the second case, we have found that the air
considerably changes the dynamics of the bending
mode and affects the mechanism of the vorticity gen-
eration. We have obtained the modified dispersion law
given by Eq. (13) and explicit formula (17) for the ver-
tical vorticity. We have analyzed the formula and for-
mulated some predictions, which can be checked
experimentally.

Though our final answers (7) and (17) are obtained
for the case of monochromatic pumping, our theoret-
ical scheme can be used for an arbitrary time depen-
dence of pumping. Particularly, one can think about
pumping containing two close frequencies. Then some
beating effects in the generated vorticity are antici-
pated. The effects can be useful for experimental
observations and to an experimental verification of our
predictions.

Note that the applicability condition of our theory
is [VA| < y¥2, where |VA| is the film tilt and vy is the
small parameter of the theory (12). If the tilt |VA]
becomes larger than y*/? then the applicability condi-
tion of our theory that is weakness of nonlinear effects
in the film is violated. Then one expects a strong non-
linearity of the solenoidal motions exited in the film.
That could lead to formation of an analog of the
inverse cascade and to appearing of large coherent
vortices in the film, like in [14—16]. Let us stress that
the effect can be observed even for a weak tilt |V A|.

We have developed our theory for the case of the
smectic A films that are isotropic. However, practi-
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cally all the obtained results can be carried to the case
of the orientationally ordered films of the smectics C
and of the hexatic smectics due to their weak aniso-
tropy. Note that for such cases the vortical in-plane
motion would generate some non-trivial orientational
patterns that could help to investigate the motion.
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