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All-dielectric light concentrator to subwavelength volume

S. S. Vergeles,1,2 A. K. Sarychev,2,3 and G. Tartakovsky4

1Institute for Theoretical Physics of RAS, Chernogolovka 142432, Russia
2Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia

3Institute of Applied and Theoretical Electrodynamics, Moscow 125412, Russia
4Advanced Systems and Technologies, Inc., Irvine, California 92618, USA

(Received 24 November 2015; revised manuscript received 12 December 2016; published 2 February 2017)

Concentration of light into a nanospot is essential for the heat assisted magnetic recording, biomedical imaging,
sensing, and nanolasing. We propose a novel all-dielectric optical field concentrator, which focuses the light,
pumped through the waveguide, into a hot nanospot, which is much smaller than the wavelength. The dissipative
loss, which is characteristic to a plasmonic nanoantenna, is absent in the dielectric concentrator. Therefore, the
detrimental thermal effects almost vanish, which gives an opportunity to use the concentrator for the heat-assisted
magnetic recording. The electric field is much enhanced in the proposed new device at the vertex of the dielectric
beak, which is attached to the dielectric resonator. The resonator in turn is pumped through the special waveguide.
The electric field enhancement and concentration is achieved by longitudinal polarization of the beak vertex,
which is exposed to em electric field generated by the pumped resonator. The spatial scale of the hot spot, where
the field concentrates, is determined by the curvature of the vertex and can be of few nanometers. We take
as a design concept the cylindrical waveguide, the spherical resonator, and the elliptic beak. The rectangular,
2.5-dimensional design of the light concentrator is also considered.
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I. INTRODUCTION

The main achievement of the modern plasmonics is the
concentration of light into nanospots that are much smaller
than the wavelength. Nanospot concentration is beneficial
for various applications: biomedical imaging and sensing,
optical microscopy with single-molecule resolution [1], heat
assisted magnetic recording (HAMR) [2,3], QED studies [4],
nanolasing, etc. Until now, plasmonic metal nanoantennas,
subwavelength apertures [5], or metallic near field concentra-
tors (NFCs) are used for this purpose. Optical field enhance-
ment and concentration is achieved in NFC by excitation of
the surface plasmons [6,7]. The main advantage of the metal
NFC is their capabilities to localize plasmonic modes, which
can be excited by the incident transverse em wave. However,
the metal NFCs have large optic loss so we propose a novel
all-dielectric NFC, which allows us to focus the light into a
subwavelength hot nanospot, without the dissipative loss. The
detrimental thermal effects almost vanish in the dielectric NFS
opening new opportunities in magnetic recording [8–10] and
optical pumping.

Optical microcavities can greatly enhance light-matter
interactions by storing optical energy in small volumes. The
ability to concentrate light is important not only to fundamental
physics studies, but also to practical device applications. Op-
tical microcavities confine light to small volumes by resonant
recirculation. Devices based on the optical microcavities are
already indispensable for a wide range of applications and
studies. For example, microcavities made of active III-V
semiconductor materials control laser emission spectra to
enable long-distance transmission of data over optical fibers;
they also ensure narrow spot-size laser read/write beams in CD
and DVD players. In quantum optical devices, microcavities
can force the atoms or quantum dots to emit spontaneous
photons in a desired direction or can provide an environment
where dissipative mechanisms such as spontaneous emission

are overcome so that quantum entanglement of radiation and
matter is possible (see, e.g., [4,11,12]).

Electromagnetic resonances can be excited in any piece
of a low-loss dielectric. Yet, the quality factor Q is very
different for various em modes so that some of them are very
lossy even in the rather large resonator [13]. Among all em
modes the whispering-gallery modes (WGMs) have high Q.
Consider a light beam propagating in a circular disk or a sphere
via consecutive reflections from the boundary. The rotational
symmetry of the cavity shape keeps the angle of incidence
constant, and the condition for total internal reflection is
maintained. The phase delay for light traveling one circle along
the boundary must be equal to 2πm(m = 1,2,3, . . .), so that
the returning field has the same phase as the original field and a
steady state is reached [14]. High quality WGM resonators are
used for many application including microlasers and sensors
[15,16]. Yet, high precision is required in positioning the
coupler with respect to the cavity boundary in order to obtain
sufficient output while avoiding a dramatic reduction of the
quality factor (Q spoiling). An alternative way to increase
output to the free space is modifying the resonator boundary.
After realization of the semiconductor microdisk lasers, Levi
et al. [17] achieved directional output by introducing a tab
on the disk circumference. The same shape and the inverted
version (a notch) had been used [18] for the same purpose
and for mode discrimination. A linear decrease of the radius
of a circle with the polar angle gives the spiral shape with a
localized stepped defect [19,20], which demonstrates much
enhancement of local em field at the setback as well as
unidirectional light emission. Our NFC is similar in a sense to
these WGM notched resonators since the NFC consists of the
dielectric resonator with attached nanobeak, where the near
field concentrates.

The electric and magnetic fields concentration in the
dielectric microstructures attracted a lot of attention in recent
years [15,21]. The electric field enhancement in-between
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FIG. 1. (a) NFC consisting of a cylindrical silicon waveguide
with radius ρ, spherical resonator of radius a, and prolate elliptical
nanobeak. (b) Numerical simulation of the magnetic field |H |
(A/m), which is pumped in the resonator through the waveguide
(ρ = 107, a = 110 nm, λ = 900 nm). Magnetic dipole resonance is
excited along z axis, i.e., perpendicular to the page; the reflection at
the junction between the waveguide and the resonator is rather small
so the field is almost not modulated in the waveguide.

two neighboring resonating dielectric spheres was predicted
[22] and observed in the experiment [23] for the nanodimer
consisting of the silicon nanocylinders of diameter 140 nm,
hight 150 nm, and gap 30 nm. The chain of six dielectric
nanoparticles was suggested as Yagi-Uda antenna [24]. The
dielectric Yagi-Uda antenna greatly increases the radiation of
a dipole placed between first and second particles. It is clear
that the antenna will concentrate the incident light in the same
point. Enhanced light focusing was proposed and observed in
the work [25], where the authors investigate a ring of plasmonic
metal nanoparticles interacting with each other but also with an
adjoining dielectric microresonator. The plasmon resonance in
the plasmonic ring results in the greater increase of the em field
near the surface of the dielectric microresonator far away from
the ring. Note that the electric field is much less enhanced in
the case of the spatially separated metal clusters and dielectric
microresonators [26]. The light propagation in the dielectric
metamaterials is discussed in the review [27]. For example,
the em wave can be very confined in a subwavelength scale
in the dielectric waveguide with anisotropic cladding [28].
The electric field concentration due to a resonance between
periodic dielectric rectangular resonators was simulated [29],
and super resolution of the resonate microstructures can be
achieved by a dielectric microsphere (see [30] and references
therein). The enhancement of the optical nonlinearity was
observed [31] due to the magnetic resonance in the system of
four closely packed dielectric disks. The effective absorption
of em energy in the periodic semiconductor metafilms was
investigated for the solar cells (see [32] and references therein).
The strong electric field enhancement and SERS in the periodic
metafilms, constructed from the dielectric microbeams, was
obtained in [33,34] for microwave and optical spectral ranges.
The distributed dielectric resonances in the randomly faceted
ceria metafilms were also considered [35–37]. The dielectric
metamaterials can be used for the effective biosensing [38].
Preliminary description of the NFC was published in [39].

In the proposed device the electric field is very enhanced
at the vertex of the dielectric beak, which is attached to
the dielectric resonator (Fig. 1). The field enhancement at
the apex of the sharp dielectric beak can be understood as
follows [40]: the external driving field, polarized along the

FIG. 2. (a) Electric field ln |E| (V/m) excites beak: (a) in-
clined waveguide orientation, beak length b = 150 nm; (b) vertical
waveguide orientation, b = 130 nm; small axis of elliptical beak
g = 11 nm, spherical resonator has radius a = 110 nm, and radius of
the waveguide ρ = 107 nm.

beak axis, drives the bounded electrons periodically forth
and back along the beak shaft with the same frequency as
the exciting field. Because of the small surface area near
the apex the uniform displacement of the bounded electrons
gives rise to a huge surface charge accumulation at the apex.
These charges generate a secondary field which is seen in
Fig. 2 as enhanced field. The enhancement of the longitudinal
electric field at the vertex can be achieved for any optically
dense material, including a transparent dielectric (see, e.g.,
[15,41]). The problem is how to convert the incident light
into a longitudinal electric field. A simple waveguide does
not produce a considerably localized longitudinal electric
field [42], which is necessary to excite the beak. In recently
proposed metal NFC [43], the specially designed plasmonic
lenses produce the longitudinal electric field. In contrast to
the previous works, we propose to excite the dielectric beak
through the waveguide ended by the optic resonator, which
accumulates em energy. The waveguide is matched with the
resonator. The em energy, pumped through the waveguide,
accumulates in the resonator and effectively excites the beak,
attached to the resonator. Note the WGMs were efficiently
channeled into an attached waveguide without additional
loss [44]. A robust and generic mechanism was suggested
to achieve there unidirectional output from wave-chaotic
microcavities.

II. TRANSFORMATION FROM TRANSVERSE
TO LONGITUDINAL FIELD

We propose to outfit the end of the waveguide with the
spherical Mie resonator. When the resonator is tuned to
match the waveguide modes, it strongly influences the spacial
structure of em field. The strongly localized longitudinal
electric field is produced. Thus, NFC takes the form of the
pumped resonator, where the electric field concentrates at the
vertex of the attached beak [Fig. 1(a)]. The field is maximized
at the vertex. We will use semiquantitative analysis of the
NFC elements, namely the spherical resonator, the beak, and
the cylinder waveguide feeding. We also present computer
simulations of the silicon NFC operating in the red and
near-infrared spectral range (λ > 800 nm), where the silicon
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permittivity ε � 15 (see [45,46]); the ohmic loss is neglected
being much smaller than the radiation loss. The permittivity
of the surrounding space is equal to 1 and the harmonic time
dependence ∼ exp(−iωt) is assumed for all the em fields and
currents.

For the fixed frequency range the quality factor Q of a
dielectric resonator increases with increasing its size. It is
possible to find a larger number of long-lived modes and the
decay time increases. We are interested in the high Q modes
that are not fully confined but have a sufficient large external
component. Such modes are dumped by the beak attached to
the resonator as it is discussed in Sec. V and Appendix B.
Hence, we use the simplest spherical resonator, where the
magnetic dipole resonance is excited. The magnetic dipole
mode has a sufficient high quality factor Q, small volume,
and electric field spilled out of the resonator. The em radiation
is minimalized in consequence of the solenoid structure of
the electric field in the mode. Good enough parameters have
electric dipole resonance. Still our computer simulations show
that a subwavelength waveguide is better matched with a
magnetic dipole mode.

The magnetic dipole Mie resonance is excited in the
spherical resonator of radius a in such a way that the average
magnetic field is parallel to the “z” axis, which is perpendicular
to the plane of Figs. 1(b)–6. The electric vector potential A
has only nonzero z-component Az so that E = curl A and H =
curl E/ik, where the wave vector k = ω/c and ω is the reso-
nance frequency. The external electromagnetic field is given
by the potential Ae

z = E0 u2
a exp [ik(r − a)]/[ku(n − iua)],

where the dimensionless coordinate u = knr , ua = kna, the
refractive index n = √

ε, and r is the radius-vector. The radia-
tion boundary conditions are imposed at infinity. The internal
vector potential is chosen in such a way that at the resonator’s
surface r = a the boundary conditions are automatically full
field for the electric field and for the normal component of
the magnetic field: Ai

z = −E0 sin(u)/[knuf (ua)], where the
function f is defined by the following equation:

f (u) = u cos(u) − sin(u)

u2
. (1)

The third boundary condition for the tangential component
of the magnetic field gives the dispersion equation for the
resonance frequency

ua cos ua + (n2 − 1 − in ua) sin ua = 0. (2)

The resonance frequency for the first resonance can be
estimated as

ω = ω1 − iω2 ≈ (πc/an)(1 − n−2 − iπn−3) (3)

for the optically dense medium, n � 1. The imaginary part
ω2 of the resonance frequency gives the radiation loss. Be-
cause of the radiation condition E ∼ H ∼ exp(ikr), r → ∞;
the solution for the mode has to decay in time. It is therefore a
quasibound state with complex-valued frequency ω; Im(ω) <

0. Moreover, the fields diverges as ∼ exp[Im(k)r] with Im(k) =
Im(ω)/c < 0 as the radial coordinate r tends to infinity. Hence,
the quasibound state is strictly speaking not normalizable.
The divergence does not affect the angular distribution of the
emitted light.

To describe the spatial structure of the em field it is
convenient to introduce the spherical coordinates {r,θ,ϕ},
where axis z is perpendicular to Fig. 1(b). At the considered
magnetic resonance the electric field E rotates around axis z,
i.e., it has the tangential ϕ component only. Then the internal
electric field (r < a) can be written as(

Ei
x

Ei
y

)
= E0 sin θ

f (u)

f (ua)

(
sin ϕ

− cos ϕ

)
, (4)

where the function f is given by Eq. (1). The outward electric
field (r > a), which excites the beak, can be written as(

Ee
x

Ee
y

)
= E0 sin θ

n − iu

n − iua

(
a

r

)2

exp [ik(r − a)]

(
sin ϕ

− cos ϕ

)
,

(5)

where E0 is the surface electric field at the equator of the
resonator, i.e., r = a and θ = π/2. The magnetic field in and
out of the resonator is obtained by substitution of Eqs. (4)
and (5) in the Maxwell equations. The amplitude of E0 in
Eqs. (4) and (5) is determined by em energy pumped into
the resonator. We obtain that the electric field Ee has a “y”
component, which is parallel to the beak shown in Fig. 1. This
longitudinal field effectively excites the beak. The quasibound
state (5) approximates the external field for the distance from
the resonator r < 1/Im(k) � a.

III. POLARIZATION OF A PROLATE BODY PLACED
IN NONUNIFORM ELECTROMAGNETIC (EM) FIELD

In the proposed NFC the electric field concentrates in the
dielectric beak, which is attached to the spherical resonator.
The outward field of the resonator field, given by Eq. (5),
excites the beak. We consider now an important nanophotonic
problem, namely the field distribution in the vicinity of the
much prolated body, which is placed in an inhomogeneous
electric field. The em wave scattering by a dielectric ellipsoid is
a classical problem of the classical electrodynamics. In recent
years significant progress is achieved in the “Mie theory” for
scattering by a dielectric ellipsoid (see [47] and references
therein). The problem is reduced to the infinite set of the
linear equations for the spatial harmonics. The number M of
the harmonics, which should be considered to approximate
the near field, depends on the inhomogeneity of the local
field. The electric field concentrates in the vicinity of the
apex of the high-refractive-index, prolate ellipsoid we are
interested in. The spatial scale of the region, where the field
concentrates, is on the order of the curvature of the apex
R0 = g2/b, where g 	 b are semiaxes of the ellipsoid. Then
the number of the spatial harmonics and, correspondingly,
the number of the linear equations to be solved estimates as
M ∼ b/R0 = (b/g)2 � 1. Therefore, it is difficult to use the
Mie theory for the analytical calculation of the electric field
near the prolate high-refractive-index ellipsoid.

We show below that the field and the charge distribution
in the much prolated dielectric beak can be found from
the ordinary differential equation, which is merely a usual
hypergeometric equation. It is assumed, for the simplicity,
that the beak in Fig. 1 is the prolate axisymmetrical body
of revolution. The axis of the beak is chosen as y axis,
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i.e., the beak is a cylinder, in which radius r(y) depends
on the coordinate. The developed formalism holds for any
shape-function r(y) as soon as |dr/dy| 	 1. The obtained
below Eq. (15) gives the field distribution in any smooth
cylinder with variable radius. To get insight into the problem
we consider now the simple quasielliptical beak, whose radius
changes as

r(y) = g

[
1 −

∣∣∣∣yb
∣∣∣∣

2
α+1

]
, (6)

where |y| < b is the coordinate along the beak axis, the
semiaxis g 	 b, and the exponent α > −1. When α = 0
Eq. (6) gives the simple elliptic beak. The exponent α defines
bluntness/sharpness of the beak apex, namely the curvature
of the apex equal to R = R0/(1 + α), where R0 = g2/b

is the curvature of the ellipsoid at the end point y = b.
Note that the condition |dr/dy| 	 1 is violated in the small

vicinity of the central point |y| < g( g

b
)

2
α−1 when the index

α > 1. This region, however, does not have much influence
on the internal electric field since the surface charge is
mainly distributed at the end of the beak as it is discussed
below.

We find the internal electric field in the much elongated
beak of length 2b � g = max(r) and the beak is assumed to
be rather smooth. This form factor is typical for the metal
tips used in the contemporary experiments [40]. The beak is
excited by an inhomogeneous longitudinal field Ee

y given, for
example, by Eq. (5). The material of the beak is characterized
by permittivity ε = n2 or complex conductivity σ ≡ −iω(ε −
1)/4π . The internal electric field in the beak Eb(y) is the sum
of the external field and the field induced by the electric charge
and the current

Eb
y (y) = Ee

y(y) − d�(y)

dy
+ ikAy(y), (7)

where � and Ay are scalar and vector potentials correspond-
ingly; the Lorentz gauge is assumed. The transversal field,
induced by the current and charge, is neglected since we
assume |dr/dy| 	 1. Then the relation between the electric
current J and the field Eb

y at the axis of the beak is given by
the Ohm law

J (y) = π [r(y)2Fs(y)]σEb
y (y), (8)

where the beak radius r(y) is given by Eq. (6); the function
Fs(y) equals Fs(y) = 2J1[nkr(y)]/[nkr(y)], where J1 is the
first kind of Bessel function. The renormalization of the radius,
given by the function Fs(nkr), appears in Eq. (8) due to the
nonuniform beak filling with the current when the skin effect
is important, i.e., |n|kg > 1.

The electric potential � is produced by the charge, which is
distributed over the surface of the beak. Let q(y) be the linear
density of the charge, then the potential at the axis y is given
by the integral

�(y) =
∫ b

−b

eik|y−y ′ | q(y ′) dy ′√
(y − y ′)2 + r(y ′)2

. (9)

The electric potential can be divided into singular and regular
parts. The singular part �0 of the potential � is extracted

from Eq. (9) by splitting the integral into two parts �(y) ≡
�0(y) + �1(y), namely

�0(y) = q(y)
∫ b

−b

dy ′√
(y − y ′)2 + r(y ′)2

= q(y)

C(y)
, (10)

�1(y) =
∫ b

−b

q(y ′)eik|y−y ′ | − q(y)√
(y − y ′)2 + r(y ′)2

dy ′, (11)

where the dimensionless coefficient C(y) is the linear ca-
pacitance, which depends on the radius r(y). To solve the
integral in Eq. (10) note that the small term r(y ′)2 in the
square root is only important for |y − y ′| < g. We replace
r(y ′) ≈ r(y) + (dr/dy) (y ′ − y) by r(y), since it is assumed
that |dr/dy| 	 1, obtaining

�0(y) ≈ q(y) ln

[√
(b + y)2 + r(y)2 + b + y√
(b − y)2 + r(y)2 − b + y

]
≈ q(y)

C(y)
,

1

C(y)
= ln

4(b2 − y2)

r2(y)
, (12)

where we still suppose that r(y) � g 	 b. Thus the electric
potential in the logarithmic approximation is just proportional
to the linear charge density. For the beak, which shape is given
by Eq. (6), the linear capacitance equals

1

C(y)
= 1

C0
+ ln

(
1 − y2

2

1 − |y2| 2
α+1

)
, (13)

where y2 = y/b and C0 = [2 ln (2b/g)]−1 is the linear capac-
itance of a prolate ellipsoid. The second term in Eq. (13)
is on the order of one and it achieves the maximum value
ln(α + 1) for y → b. Therefore, we can neglect this term in
comparison with C−1

0 for the case of a much elongated beak
when (2b/g)2 � 1 + α. Then the linear capacitance C(y) is
just a constant C(y) ≈ C0.

We now estimate the nonsingular part �1 of the electric
potential. The integral for potential �1(y) in Eq. (11) has
no singularity at y = y ′. Therefore the potential �1(y) gives
relatively small correction to the singular potential �0(y). Yet,
the potential �1 can be important since the phase of �1 is
shifted with respect to the charge q(y) and, therefore, �1(y)
gives the radiation loss as it is discussed below in Sec. V and
Appendix B.

Using the same approach we obtain the vector potential
Ay(y) ≈ L(y)J (y)/c, where L(y) = C(y)−1= ln[4(b2−y2)/
r2(y)] is the linear inductance, and c is the speed of light.
Note the vector potential can be presented in the alternative
form Ay(y) ≈ −ikL(y)Py(y), where Py(y) is the polarization
of the beak along its shaft. We substitute the electric potential
�0 and vector potential Ay in Eq. (7) and obtain the electric
field inside the beak Eb

y (y) in terms of the surface charge q(y)
and the electric current J (y) flowing in the beak

Eb
y (y) = Ee

y(y) − d

dy

q(y)

C(y)
+ ik

c C(y)
J (y), (14)

where Ee
y(y) is the component of the external field directed

alongside the beak. The obtained internal electric field Eb
y (y)

we substitute in the Ohm law, use the charge conservation
iωq = dJ/dy, and obtain the equation for the electric current
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flowing in the beak

J (y) = πr(y)2Fs(y)σ

[
Ee

y(y) − 1

iω

d

dy

(
1

C(y)

dJ (y)

dy

)

+ ik

c C(y)
J (y)

]
, J (±b) = 0. (15)

The internal field at the beak axis equals Eb
y = J/(πr2Fsσ )

as it follows from Eq. (8). Note that in the case of strong
skin effect (Re σ → ∞) the internal electric field Eb

y vanishes
and, therefore, the expression in the square brackets on the
right-hand side of Eq. (15) vanishes also. Then we obtain
the well known antenna “microwave” equation [48,49] for the
current in the thin metal wire antenna.

There is an important particular case of the prolate beak
given by Eq. (6), where the semiaxes ratio is large enough
(b/g)2 � α. Hence the capacitance and inductance, given
by Eq. (12), do not depend on the position C = 1/L ≈ 1/

[2 ln(2b/g)]. We consider a rather small beak b 	 λ and
neglect, for simplicity, the skin effect and inductance. Then
Eq. (15), which can be rewritten in terms of the internal
field Eb

y = J/(πr2σ ), takes the form of the hypergeometric
equation

(y1−1)y1
d2Eb

y (y1)

dy2
1

+ 2(2y1 − 1)
dEb

y (y1)

dy1

+ (2 + D0)Eb
y (y1) = D0E

e
y(y1), (16)

for the beak field Eb
y , where the dimensionless coordinate

y1 = (1 − y/b)/2, and the parameter

D0 = 2/[ny(ε − 1)], (17)

where the depolarization coefficient ny = (g/b)2 ln(2b/g).
Equation (16) has a simple analytical solution considered in
detail in Appendix A. Surprisingly, the deviation of field Eb

y

from the external field Ee
y inside the beak is determined by the

only parameter D0, where the depolarization coefficient ny

is supposed to be small ny 	 1. In the case of a strongly
elongated beak, D0 � 1, the internal field is close to the
applied field Eb

y � Ee
y , see Eqs. (A3) and (A4). On the

contrary, when the parameter D0 � 1 and the dielectric
permittivity ε is large, one can alternate the electric field inside
the beak by means of the beak geometry variation.

IV. FIELD ENHANCEMENT AT THE APEX
OF THE DIELECTRIC BEAK

In the proposed NFC the beak has the form of the prolate
ellipsoid and it is placed in the equatorial plane x,y (θ = π/2)
with the shaft parallel to the y axis as it is shown in Fig. 1.
The center of the beak is located on axis x at the distance d

from the center of the resonator. The internal field {Eb
x,E

b
y }

is estimated as the field in the prolate ellipsoid placed in the
external field {Ee

x,E
e
y} given by Eq. (5). We use Eq. (A4) to

calculate the electric field component parallel to the beak axis
Eb

y (y) inside the beak. The field, which is perpendicular to
the beak shaft, is approximated as Eb

x = Ee
x/[1 + nx(ε − 1)],

where the transversal depolarization factor nx
∼= 1/2 for

g 	 b. The field intensity Is on the outer surface of the beak
Is(y) = ε2|Eb · nb|2 + |Eb − (Eb · nb)|2, where nb is the unit

FIG. 3. (a) Dielectric elliptical beak guides electric field: length
b = 150 nm, small axis g = 11 nm, and resonator radius and
wavelength are a = 110 nm and λ = 900 nm, correspondingly. The
units are the same as in Fig. 1. (b) |Eb(y)|-field profile along the shaft
of the beak of various length b, the apex curvature R0 = 1 nm; external
Ee field and its tangent projection Ee

y in the absence of the beak are
also shown; the internal field |Eb

y | equals the applied field |Ee
y | for

elliptical beak, whereas |Eb
y | 	 |Ee

y | near the end of the cylindrical
beak; note the electrical field concentrates in the nanovolume indeed.

vector normal to the surface. The field enhancement at the beak
surface is shown in Fig. 3. The field intensity at the vertex of
the beak is estimated from Eqs. (5) and (A4) as

Is(b) � |E0|2(εda2)2 1 + (b2 + d2)k2

(b2 + d2)3(1 + a2k2)
, (18)

where d is the position of the beak, E0 [Eq. (5)] is the field at
the surface of the resonator, and k � π/(na) [see Eq. (2)] is
the resonant wave vector. For n � π the beak intensity Is(b)
achieves maximum value Im � |E0|2ε2(a/b)4 for d � a. The
maximum intensity estimates as Im ≈ 13|E0|2 for the silicon
resonator with the resonant wavelength λr = 900 nm, ε ∼= 15,
and geometric sizes a = 110 nm, b = 150 nm, g = 11 nm
(see Fig. 3). The cascade enhancement of the electric field
is achieved: first of all, there is a resonance in the dielectric
resonator, second, the resonant field is further amplified due
to the longitudinal polarization of the beak.

The electric field at the closest vicinity of the vertex is
approximated as the field outside the dielectric ellipsoid (see,
e.g., [50] Sec. 8). We use this known solution for the outward
field in the vicinity of the vertex of the much prolated ellipsoid.
The field intensity along the beak shaft changes as

I (yb) = Is(b)

(
2yb/ε + 1

2yb + 1

)2

, (19)

where Is(b) is given by Eq. (18), yb = (y − b)/R0 > 0 is the
dimensionless distance from the vertex, and R0 = g2/b is the
curvature of the elliptical beak at its vertex. Note the outward
beak normal nb changes its direction on the elliptical curvature
scale R0. Therefore, the electric field concentrates in the
subwave volume ∼R3

0 	 g3 	 λ3 (Fig. 3). The localization
scale and the intensity of the local field are on the same order
of magnitude as in the plasmonic nanoantennas [51]. The size
of the hot spot at the beak vertex further shrinks when the apex
becomes more sharp, that is the parameter α in Eq. (6) increases
above zero and the apex curvature R = R0/(1 + α) decreases.
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We speculate that the above estimates for the field holds for
the quasielliptical beak, which shape is given by Eq. (6), when
it is elongated enough so that 2 ln(2b/g) � ln(1 + α) and the
linear capacitance of the beak is still a constant [see discussion
at Eq. (13)]. In the opposite case of the straight cylinder,
which corresponds to the parameter α → −1 in Eq. (6), the
field |Eb

y | > |Ee
y | just outside of the end of the cylindrical

tip. However, it is much less enhanced in comparison with
a prolate ellipsoid, as it is shown by the black curve in
Fig. 3(b), since the surface charges, distributed at the base of
the cylinder beak, screen the external field.

V. EXCITATION OF RESONATOR AND BEAK

The spherical silicon resonator with attached beak is
pumped through the dielectric waveguide. Therefore in
contrast to ANSOM we can directly deliver the electric power
to the vertex of the beak without widespread exposure. We
consider the silicon cylindrical waveguide attached to the
resonator as it is shown in Figs. 1 and 2. Two configurations of
the beak and the waveguide were considered in the computer
simulations. The beak was attached near the the connection
of the waveguide with the resonator or the beak was opposite
to the waveguide, as it is shown in Figs. 2(a) and 2(b),
correspondingly. It is interesting to note that em field is more
enhanced in the inclined beak. We speculate that the additional
enhancement is due to the em field which is concentrated in
the interface between waveguide and the resonator [see also
the discussion below Eq. (20)].

To effectively pump the resonator, the backward reflection
of the light into the waveguide should be minimized. The
reflectance Rw at the interface between the waveguide and the
resonator can be estimated as Rw

∼= |Zw − Zr |2/|Zw + Zr |2,
where Zr and Zw are the impedances of the resonator
and waveguide, respectively. The problem of the effective
pumping of the dielectric resonator is similar to the problem
of an effective excitation of the resonance dielectric antenna
(RDA). RDA is an important line in research and design of
the compact antennas for the mobile devices including GPS
[52,53]. The appertura coupled spherical and semispherical
RDAe were theoretically and experimentally studied [54–57].
When the frequency of the external field is close to the
resonance of the dielectric resonator the single mode
approximation can be used to estimate the input impedance.
Then the dielectric resonator input impedance Zr is given
by the equation [nr × [nr × E0]] = Zr [nr × H0], where E0

and H0 are the fields at the surface of the resonator given
by Eq. (5) and nr is the surface normal. The structure of the
em field in the magnetic resonator results in the impedance
Zr = −iuaf (ua)/{n[f (ua) + sin (ua)]}, which remains
the same at any point of the interface of the resonator, here
the function f is given by Eq. (1) and resonance value
ua is given by the solution of Eq. (2). For the wavelength
λr = 900 nm the impedance equals Zr ≈ 0.454–1.108 i for
the silicon resonator. The real part of the impedance Zr is
always positive, which follows from the energy conservation
law. The imaginary part of Zr is negative and it is much
larger than Re(Zr ). It is not surprising that the impedance is
almost inductive for the magnetic resonance. To be effectively

pumped the resonator impedance Zr should be matched to the
impedance Zw of the cylinder waveguide.

There is enormous literature devoted to the cylindrical
and other dielectric optic waveguides since the problem
is central for the modern telecoms. It is well known that
the cylindrical waveguide, whose radius is much less than
the wavelength, always support so-called dipole mode. In the
dipole mode the electrical and magnetic fields are almost
uniform in the waveguide. Outside the waveguide they have
angular dependence similar to the 2d dipole field. When
the radius ρ of the dielectric waveguide is sufficiently large
ρkn > 1, the electromagnetic wave is well confined inside.
Then the waveguide impedance, calculated as above from the
equation [nr × [nr × Ew]] = Zw[nr × Hw], yields the value
of Zw = n−1 ≈ 0.252 	 |Zr |, that is the interface reflectance
Rw

∼= 0.65. Note that the vector nr has the same direction in
both equations for the impedances Zr and Zw since the axis
of the waveguide is assumed to be normal to the resonator
interface.

The dipole mode is preserved in the waveguide even when
its radius ρ vanishes. Yet, the spatial distribution of the em
field qualitatively changes when the radius ρ decreases up to
zero. We obtain the em field by standard matching the linear
combination of TE and TM dipole modes inside and outside
a dielectric waveguide. Thus an obtained dispersion equation
for the phase constant q results in the following result. When
the waveguide radius ρ decreases below the critical value
ρc = ν01/(k

√
n2 − 1), where ν01 is the first zero of the

first-kind, zero-order Bessel function J0, the phase constant
estimates as

q = k

√
1 + 4

(ρk)2
exp

[
− (n2 + 1)J0(p)

p J1(p)
− 2γ

]
, (20)

where γ is the Euler constant, parameter p = ρk
√

n2 − 1, and
J0 and J1 are the Bessel functions of zeroth and first orders,
correspondingly. That is the phase constant q is exponentially
close to the wave vector k and, therefore, electromagnetic
field spills out of the waveguide. The outside electromagnetic
field takes the shape of the dipole wave and spreads all over
the space. In this case, the waveguide impedance Zw depends
on the coordinates and takes almost any value in the plane
perpendicular to the waveguide axis. The waveguide radius
used in our simulations is 100 nm ≈ 1.2ρc, which corresponds
to the compromise between minimization of the waveguide
radius and the waveguide mode localization.

The junction between the resonator and the waveguide
is optimized by introducing a tapered waveguide “waist,”
whose radius is less than the critical radius ρc. We use the
waveguide waist with radius 65 nm and length 9 nm to match
the waveguide with the resonator and reduce the reflectance
Rw < 0.1 so that the wave, shown in Fig. 1(b), is almost
nonmodulated in the waveguide. Therefore, almost all external
power is pumped into the resonator, where the electric field
intensity of |E0|2 is increased Q times with respect to the
pumping field. The resulting intensity enhancement G at the
beak vertex could be as large as G ∼ Qε2(a/b)4 � 1.

When considering the matching between the waveguide and
the resonator we do not take into account the beak, which is
attached to the resonator. Consider now the impact of the beak
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on the em field oscillations in the dielectric resonator. The
electric energy, accumulated inside the resonator, estimates
as Hr = ε

∫
in |Ein(r)|2dV , substituting here the internal field

from Eq. (4) and resonance value ua ≈ π from Eq. (3) we
obtain Hr � 1

6a3ε|E0|2, where E0 is the electric field at the
equator of the resonator [see Eq. (4)]. We have shown above
[see discussion at Eq. (17)] the internal field in the much
prolated beak is close to the external field, which excites
the beak. Then the beak electric energy estimates from Eq.
(5) as Hb ∼ εVb|E0|2, where Vb ∼ g2b is the beak volume.
The relative shift of the resonance frequency due to the beak
is about �ω/ω ∼ Hb/Hr ∼ g2b/a3. We consider the beak,
whose length is about the resonator radius a, then the resonance
frequency shift due to the beak estimates as �ω ∼ ω1(g/a)2.
This shift of the resonance frequency should be compared
with the radiation width of the resonance ω2 ∼ ω1πn−3 [see
Eq. (3)]. When the refractive index n � (a/g)2/3 the resonance
frequency shift is on the order of the radiation width and,
therefore, can be neglected for a qualitative analysis.

The radiation width itself increases since the beak func-
tions as an antenna that radiates em energy accumulated in
the resonator. The radiation loss in the resonator without
the beak estimates as Qr ∼ Hrω2 ∼ ω1a

3n−1|E0|2, where the
resonance frequency ω1 and relaxation frequency ω2 are given
by Eq. (3). The beak radiation Qb is investigated in the details
in Appendix B. Yet, it can be roughly estimated as dipole
radiation Qb ∼ (g2b)2|j |2k3ω−1

1 , where j is the density of the
displacement current in the beak. In the much prolated beak,
when the parameter D0 � 1 [see Eqs. (17) and (A3)], the
inside field is close to the external field. Then the displacement
current approximates as |j |2 ∼ (εω1)2|E0|2 and the radiation
loss Qb ∼ ω1n(g2b)2a−3|E0|2, where we take into account
that the resonance wave vector k ∼ (an)−1. In the considered
NFC the beak length b ∼ a, hence, Qb ∼ ω1ng4a−1|E0|2.
Since the beak loss Qb is less than the resonator loss Qr ,
that is the ratio Qb/Qr ∼ ε(g/a)4 	 1, we can neglect for the
qualitative consideration the influence of the beak radiation on
the considered magnetic resonance.

We performed our computer simulations in FEMLAB
environment. The whole system, including the beak, the
resonator, and the waveguide, has been surrounded by the
perfectly matching layer (PML), with the radius greater than

FIG. 4. Tip heats 2 nm magnetic nanoparticles made of alloy FePt
[58]; heat production inside the central magnetic particle is 1.4 times
greater than in its neighbors.

the vacuum wavelength. The waveguide’s port, which is
placed near the intersection of the dielectric waveguide and
the PML sphere, is used to launch the em wave into the
waveguide, which in turn pumps the spherical resonator. In
order to demonstrate the capability of light concentration, we
simulate the field distribution around three test spherical FePt
nanoparticles 2 nm in diameter, placed in the vertex area of the
beak, see Fig. 4. Such FePt nanoparticles are often used for a
magnetic recording [5,58].

VI. PLANAR, QUASI-TWO-DIMENSIONAL DESIGN
FOR THE NEAR FIELD CONCENTRATOR: NUMERICAL

SIMULATION OF 2.5-DIMENSIONAL HEATING
HEAD ABOVE WAFER WITH Fe-Pt GRAINS

Suppose that we would like to integrate the proposed near
field concentrator in the solid state electronics. Then it is
convenient to use the layer by layer growth for the fabrication
of the waveguide, the resonator, and the tip. The thin film
technology is typical for the fabrication nanoscale objects. To
reduce the number of the technological steps and simplify the
production process the structure should have a right cylindrical

FIG. 5. Rectangular supplying waveguide, disk resonator, and
beak of the near field concentrator are made of silicon. The front
plane is the cutting plane of mirror symmetry. The lateral faces
of the silica cladding are shown by bold black lines, two faces of
the cladding parallel to the diamondlike carbon (DLC) substrate are
marked by light black lines. DLC layer with equally spaced FePt
grains is placed above NiTa substrate. FePt grains of size 14 nm are
arranged in the square lattice with period 20 nm. Height of the tip
(size in the direction perpendicular to the figure plane) is 16 nm. Disk
radius is 110 nm, its height is 210 nm. The gap between the cladding
and DLC plate is equal to 5 nm. Optical properties of Fe-Pt alloy
were taken from [58], and for silicon from [46]. Permittivity of NiTa
alloy we estimate as the arithmetic mean of Ni and Ta permittivities.
Permittivity of DLC is estimated as εDLC = 3.5 from [59,60].
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FIG. 6. Electric field distribution below the heating head.

form in the direction of the technological growth, i.e., in the
direction perpendicular to the plane of Fig. 5 (z direction).
That is the resonator is not spherical but it has a disk shape,
the waveguide has rectangular shape, and the beak is an
rectangular edge as it is shown in Fig. 5. Note that height
of the beak (size in z direction) is less than the height of the
disk resonator and the waveguide. The strong em field confined
between two rectangular dielectric waveguides was considered
in [61–63]. Various disk resonators were investigated for
microwaves many years ago [52]. For the optical spectral range
anapole resonance as well as magnetodipole resonance in the
silicon disk were investigated recently in the computer and
real experiments [64,65].

We performed the numerical simulation of em field distri-
bution in 2.5-dimensional (2.5D) silicon NFC as it is shown in
Fig. 6. The disk resonator, rectangular beak, and the plane
waveguide are embedded in the silica cladding. The disk
resonator and the plane waveguide have the same height. The
beak has rectangular cross section. Thus constructed 2.5D NFC
including the silica cladding can be of a macroscopic size and
can be integrated in the modern devices. Thus the NFC can be
used for HAMR or local biosensing. To demonstrate HAMR
capability of the proposed 2.5D NFC we added substrate,
whose structure resembles those considered in [66,67]. The
substrate is the diamondlike carbon (DLC) matrix, where Fe-Pt
nanograins are distributed. Electric field is much enhanced at
the tip of the silicon beak embedded in the silica cladding.
We perform the computer simulation of the heating Fe-Pt
conducting grains due to the ohmic loss. The heat production
rate ∼ Im(εFePt)|E|2 inside the grains below NFC is shown in
Fig. 7. The heat production rate inside the grain just below the

FIG. 7. Heat production rate inside the grains in the central line.
The peak corresponds to the grain below the tip as it is shown in
Fig. 6.

tip is no less than 1.6 times grater than inside the neighboring
grains. Therefore the proposed 2.5D NFC can be successfully
used for the local heating with the spatial resolution ∼10 nm.
We speculate that the further optimization would improve
the resolution up to ∼1 nm. Note that the magnesium oxide
(MgO), which is also widely used as the substrate for the
magnetic recording, has the optical constants close to DLC.
Thus, the obtained results are expected to hold for the MgO
substrates.

VII. CONCLUSIONS

We propose to use the resonances in specially designed
hierarchical dielectric structures to obtain the strong field
enhancement at a nanospot. The huge field concentration
is achieved without energy loss which is characteristic for
the metal particles. Thus the proposed em field concentrator
consists of the dielectric resonator and the beak with the sharp
apex. The resonator accumulates em energy delivered to the
resonator through the waveguide. We find the way to effec-
tively match the resonator and the waveguide. Hence we find
how to effectively pump the resonator. The electromagnetic
field of the resonator illuminates the beak and creates large
electric field at the apex. We speculate it is the generic structure
for the dielectric NFCs, which can have a rather peculiar form
with many apexes. An array of the dielectric NFCs can be
used, for example, as SERS substrate, where the luminescent
background is dumped.

For practical applications the two-dimensional design of
the NFS could be preferable. Our computer simulations show
that the dielectric edge, protruding from a disk resonator, can
also concentrate the em field. The proposed system can be
used for the heat assisted magnetic recording, nanosensing,
local TERS, and many other applications. Power released in
the hot spot can be increased if the proper plasmonic grain
[68] is placed near the proposed NFC.
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APPENDIX A: INTERNAL FIELD IN AN ELONGATED
QUASISPHEROIDAL BODY PLACED IN AN

INHOMOGENEOUS EXTERNAL ELECTRIC FIELD

We consider electric field in the prolate beak, for which the
semiaxes ratio is large enough (b/g)2 � α. Then Eq. (15)
takes the form of the hypergeometric equation (16). The
electric field inside the beak is given by the solution of
Eq. (16), which is regular for 0 � y1 � 1. For the considered
symmetric beak [r(y) = r(−y), see Eq. (6)] the homogeneous
Eq. (16) has two independent solutions F (y1) and F (1 − y1),
where F (y1) = 2F1( 3

2 + iG, 3
2 − iG, 2, y1) is the standard
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hypergeometric function, G =
√

D0 − 1
4 . Then the solution

of the inhomogeneous Eq. (16) has the following form:

Eb
y (y1) = πD2

0

cosh(Gπ )

[∫ y1

0
t(t − 1)W (y1,t)E

e
y(t)dt

− F (y1)
∫ 1

0
t(t − 1)F (t)Ee

y(1 − t)dt

]
, (A1)

where the dimensionless coordinate y1 = (1 − y/b)/2, the
external electric field Ee

y(y1) is an arbitrary function of y1,
and the Green function equals W (y1,t) = F (y1)F (1 − t) −
F (t)F (1 − y1). Equation (A1) gives the variation of the
internal field in the dielectric beak, which is excited by spatially
inhomogeneous external electric field Ee

y(y1).
Equation (A1) for the internal electric field is much more

simplified when the external field expands in the series

Ee
y(y1) = ∑max

m=0 Emym
1 . Then the internal field in the beak is

also polynomial and equals

Eb
y (y1) = D0

max∑
m=0

EmYm(y1),

Ym(y1) = Am

m∑
k=0

∣∣�(
k + 3

2 + iG
)∣∣2

k! (k + 1)!
yk

1 , (A2)

where the coefficient Am equals

Am = m! (m + 1)!∣∣�(
m + 5

2 + iG
)∣∣2 ,

and �(x) is the Euler gamma function.
Suppose, for example, the external field approximates as

Ee
y(y1) = E0 + E1y1 + E2y

2
1 + E3y

3
1 then the field inside the

beak, which shape is given by Eq. (6), equals

Eb
y (y1) = D0

D0 + 2

[
E0 + E1

(D0 + 2)y1 + 2

D0 + 6
+ E2

(D0 + 2)y1[(D0 + 6)y1 + 6] + 12

(D0 + 6)(D0 + 12)

+E3
(D0 + 2)y1{(D0 + 6)y1[(D0 + 12)y1 + 12] + 72} + 144

(D0 + 6)(D0 + 12)(D0 + 20)

]
, (A3)

where the parameter D0 is given by Eq. (17), y1 =
(1 − y/b)/2. This equation replaces the classical equation
Eb

y = E0 − 4πPyny for the internal filed in the dielectric
ellipsoid placed in the uniform electric field (see, e.g., [50]
Sec. 8). The solution check can be done by the direct
substitution of Eq. (A2) or (A3) in Eqs. (16). Recall that the
above results are obtained with so-called logarithmic accuracy:
it is assumed that not only (b/g)2 � 1 but also 2 ln(b/g) � 1.

Following Eq. (A3), the electric field inside the beak,
extrapolated to the vertex y = b, i.e., y1 = 0, estimates as

Eb
y (b) = D0

D0 + 2

{
Ee

0 + 2

D0 + 6

[
Ee

1 + 6

D0 + 12

×
(

Ee
2 + 12

D0 + 20
Ee

3

)]}
, (A4)

where D0 is given by Eq. (17).

APPENDIX B: RADIATION LOSS IN A PROLATE
DIELECTRIC ELLIPSOID

The radiation of em waves is a most important loss for a
dielectric antenna. For the qualitative analysis, we consider
the radiation of a small (bk < 1), much prolated dielectric
ellipsoid, excited by the uniform external field E0. The
radiation loss Qr is expressed in terms of the polarizability
as Qr = 1

2ωα2|E0|2, where α2 = Im α is the imaginary part
of the ellipsoid polarizability α (see, e.g., [50], Sec. 59). The
radiation loss is determined by the nonquasistatic part of the
electric potential �1 given by Eq. (B1). For a much prolated
ellipsoid the singular, quasistatic part of electric potential �0,
given by Eq. (12), is much larger than nonquasistatic poten-
tial �0 � �1. Therefore, we can substitute the quasistatic
electric charge q(y) = −dP b(y)/dy = yEb(ε − 1)(g/b)2/2

in Eq. (11), where P b = (ε − 1)r(y)2Eb/4 is the linear
polarization, Eb � D0E0/(2 + D0)] � E0/[1 + ny(ε − 1)] is
the field in the ellipsoid [see Eqs. (17) and (A4)], and y is the
coordinate along the elliptic axis, i.e., the beak shaft. Then we
expand the integrand in Eq. (11) in the power series of k and
ignore the constant term obtaining

�1 = −g2(ε − 1)

2b2

[
2y + 1

6
k2y(y2 − 3b2) − 2

9
ib3k3y

]
Eb,

(B1)

where b and g 	 b are semiaxes. The vector potential also
gives impact in nonquasistatic electric field [see discussion at
Eq. (14)]. In the lowest orders of k the vector potential equals

Ay1 = −1

c

∫ a

−a

J (y1)eik|y−y1| − J (y)

|y − y1| dy1

� i
g2k(ε − 1)

4

(
1 − 3

y2

b2
− i

4

3
bk

)
Eb, (B2)

where J (y) = −iωP b(y) = − i
4ω(ε − 1)g2[1 − (y/b)2]Eb is

the polarization current in the dielectric ellipsoid. Substituting
the potentials from Eqs. (B1) and (B2) in Eq. (7) we obtain the
corrections to the internal field

Eb
1 = Eb g2

b2
(ε − 1)

[
1 + (kb)2

(
y2

b2
− 1

2

)
+ i

2

9
(kb)3

]
, (B3)

due to the nonquasistatic effects. As it was expected, the
corrections are small for the much prolated, subwavelength
ellipsoid, i.e., g 	 b and bk < 1. We neglect the small
correction to the internal field, given by first and second
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terms in the square brackets in Eq. (B3). However, the
third term is very important since it gives the radiation
of a small elliptic dielectric antenna. Then Eq. (B3) takes
form Eb

1 = i 8
9πg2bk3P , where P = (ε − 1)Eb/4π is the

ellipsoid polarization. On the other hand, we can write for
the polarization the following equation: 4πP (ε − 1)−1 =
E0 − 4πnyP + i 8

9πg2bk3 P , where the second term on the
right-hand side is the quasistatic depolarization field. The last
equation can be rewritten in terms of the full dipole moment
P of the ellipsoid, namely Pα−1

0 = E0 + i 2
3k3P , where α0 =

1
3g2b(ε − 1)[1 + ny(ε − 1)]−1 is the quasistatic polarizability
of the dielectric ellipsoid. Thus we obtain the equation for the
ellipsoid polarizability, which takes into account the radiation
loss

α = α0

1 − i 2
3α0k3

(B4)

and the imaginary part of the polarizability approximates as

α2 ≈ 2

3
α2

0k
3 = 2

27

(ε − 1)2

[1 + ny(ε − 1)]2
g4b2k3, (B5)

where ny 	 1 is the axial depolarization factor of the ellip-
soid. In the considered system the silicon permittivity ε is
sufficiently large ε � 1, the length of the beak is about the
resonator radius b ∼ a, and nyε < 1. Then the radiation loss
due to the beak polarization estimates as

Qb = 1
2ω1α2|E0|2 ∼ ω1g

4a−1n4(ka)3|E0|2∼ω1g
4a−1n|E0|2,

(B6)

where we take into account that resonance wave vector
k ∼ (an)−1. This equation coincides with the rough estimate
in Sec. V.
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