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The atmosphere is always turbulent due to the

high value of the Reynolds number

Re = LV /µ.

Here L is the scale, where turbulence is excited,

V is the characteristic velocity at the scale, and

µ is kinematic viscosity, 1.5 · 10−5m/s2 for the

normal conditions.



Turbulent pulsations cause fluctuations of the

refractive index ν. The fluctuation ν is a random

variable. That means that ν chaotically varies in

time and space. Therefore its properties has to

be described statistically, in terms of averages

over time or/and space. To characterize the statistical

properties well, one has to average over a big

massive of data. Different snapshots ν(t, r) can

differ essentially.



We designate the averages by angular brackets.

Say, the average value of ν2 is designated as

⟨ν2⟩. We are counting down ν from its average,

therefore ⟨ν⟩ = 0. Statistical properties of ν can

be expressed in terms of its momenta ⟨νn⟩. The

first moment is equal to zero. The second moment

is positive as well all even moments. Odd moments

can be either positive and negative.



One introduces an alternative way to characterize

statistical properties of a random variable x. One

introduces its probability density function P (x).

By definition, P (x) dx is the probability to find

the random variable in the interval between x

and x+ dx. Of course
∫
dxP (x) = 1,

that is the total probability is equal to unity.



To find the probability density function P (x) one

can find first the histogram of the variable x.

For this the region of existing x is divided into

intervals of length ∆x and one counts a number

of x falling into the interval. In the limit ∆x → 0

one finds a smooth curve. Normalizing the curve

one finds the probability density function P (x).

Big data are needed!



If the probability density function P (x) of x is

known then one can find its moments

⟨xn⟩ =
∫
dxP (x)xn.

Normal (Gaussian) probability density

P (x) = (2π)−1/2b−1 exp
[
−x2/(2b2)

]
,

⟨x2n⟩ = (2n)!(2nn!)−1b2n.

Odd moments are zero.



Why Gaussian probability density is so important?

Central limit theorem: if x is a sum of a big

number of statistically independent random variables

then it possesses Gaussian probability density

irrespective to statistical properties of the variables.

Example: Maxwell probability density of the molecular

velocities of an ideal gas. Reason: we consider

the average velocity determined by the sum over

a big number of molecules.



Fat tails of the density function P (x): probability

of strong deviations are much larger than for the

normal PDF. Usually such systems are characterized

by tails with stretched exponents

lnP ∝ −xβ,

for large x. The less is the index β the more fat

the tail is. The case β → 0 corresponds to power

tails.



The high moments x are determined by fat tails.

For the tail characterized by the stretched exponent

⟨xn⟩ ∝ nn/β.

Again, the less is the index β the more are the

high moments normalized by the second moment.

Extreme case: for power PDF the moments are

infinite starting from some number.



Turbulence is a chaotic state with a random

velocity v(t, r), which should be characterized

statistically, that is, through average values, which

we denote with angular brackets. The averages

can be calculated over time and/or over the

space region where turbulence is excited. For a

field, one should consider correlation functions,

say ⟨v1v2⟩, instead of the moments.



On scales much smaller than L, turbulence is
homogeneous and isotropic. Traditionally, the
properties of turbulence are characterized by the
simultaneous pair correlation function of the velocity

⟨v(t,R1)v(t,R2)⟩.

It depends solely on the absolute value R of the
separation R = R1 − R2 on scales much smaller
than L, R ≪ L.



The correlation function can be represented as

a Fourier integral
∫ dk

2π
exp(ikR)E(k),

where E(k) is called the turbulence spectrum.

The spectrum possesses a scaling behavior. In

the framework of Kolmogorov theory E(k) ∝
k−5/3. The Kolmogorov spectrum fits the observations

pretty well.



The physical mechanism behind the power spectrum

is the energy cascade. Fluid motions exited by

an external pumping at the scale L generate

movements on a smaller and smaller scale until

this process stops due to viscosity. This is accompanied

by the transfer of the kinetic energy from the

scale L to small scales, where it passes to heat

due to viscosity.



There are passive fields (temperature, concentration

of impurities) advected by the turbulent velocity.

As a consequence, they becomes chaotic and

multiscaled. They should be characterized by their

own spectrum. In accordance with Obukhov-Corrsin

theory the spectrum is characterized by the same

exponent 5/3 as the velocity spectrum. However,

the range boundary is determined by diffusion.



A light beam propagating in the atmosphere diffracts

on fluctuations in the refractive index and is

distorted, as a result. Gradually, it falls apart

into speckles. Let’s illustrate the character of

these distortions using the example of a beam

that originally had a Gaussian profile. We give

intensity profiles plotted in the transverse plane

at a distance from the source.















For a theoretical description of the propagation

of a light wave, the equation for the envelope

Ψ should be used, which determines the electric

field of the wave equal to

Re [Ψexp(ik0z − iω0t)] .

Here k0 is the wave vector, ω0 is the frequency

of the carrying wave and the wave propagates

along Z-axis.



The envelope Ψ depends on time t and coordinates

r, z. Due to the high speed of light, the state of

the atmosphere is unchanged during the passage

of the beam. For example, to pass 3 km, it

takes 10−5s. Therefore, Ψ adiabatically adjusts

to the current state of the atmosphere, which is

determined by turbulent motions.



The envelope equation can be obtained from

Maxwell’s equations, it has the form

i∂zΨ+
1

2k0
∇2Ψ+ k0νΨ = 0.

Here ν is the fluctuation of the refractive index

and ∇ is the derivative in the transverse direction.

Due to the adiabaticity, there is no time derivative

in this equation.



The fluctuation ν is a random variable that should

be described statistically, in terms of averages.

We are counting down ν from the average value

of the refractive index, therefore ⟨ν⟩ = 0. We

are interested in the evolution of Ψ along the Z

axis when light travels a long distance quickly.

Therefore, ν changes rapidly along the Z-axis.



The Obukhov-Corrsin spectrum lead to the conclusion

that the structure function

⟨[ν(r, z + ζ)− ν(0, z)]2⟩ = C2
n(r

2 + ζ2)1/3,

where the coefficient Cn characterizes the strength

of the refractive index fluctuations. Here r is the

two-dimensional radius-vector in the transverse

direction. Generally, Cn is a function of z.



Since the field ν is effectively short correlated

along Z one can substitute

⟨ν(r, z)ν(0,0)⟩ → δ(z)C2
n(C − 1.4572 r5/3),

where the constant C is determined by small

q (of the order of the inverse external scale of

turbulence). The same short correlation means

that the field ν possesses Gaussian statistics due

to CLT: enters via integrals.



Numerical simulations: a number of plane screens

perpendicular to the Z-axis are introduced. Between

the screens, the envelope Ψ evolves free. On

screens, the phase of the envelope gains a random

increment. It is a sum of Fourier harmonics guaranteing

⟨∆φ(r)∆φ(0)⟩ = C2
n(C − 1.4572 r5/3)∆z,

where ∆z is the separation between the screens.



Due to the presence of ν, the envelope of Ψ is

distorted compared to the case of free propagation.

If these distortions are small, then the correction

δΨ to the solution of the free equation can be

written as a spatial integral of ν. Therefore, by

virtue of the central limit theorem, the correction

δΨ has Gaussian statistics, provided the inequality

|δΨ| ≪ |Ψ| is satisfied.



The equation for the envelope Ψ and the short

correlation of ν along the axis Z allow us to

obtain a closed differential equation for a pair

correlation function

F (r1, r2, z) = ⟨Ψ(r1, z)Ψ
⋆(r2, z)⟩,

where Ψ⋆ is the quantity complex conjugated

to Ψ. The quantity is insensitive to large scale

fluctuations of ν.



The equation is as follows

∂zF =
i

2k0
(∇2

1 −∇2
2)F −D|r1 − r2|5/3F,

where the factor D depends on the power of

turbulent pulsations D ∼ k20C
2
n. Generally, D is

a function of z. Note the non-locality of the

equation. Nevertheless, it allows for detailed research.



For example, for an initial plane wave

F ∝ exp
[
−

∫ z
dζ D(ζ)|r1 − r2|5/3

]
.

One can introduce the envelope correlation length

r0 (Fried length) equating the argument of the

exponent to unity. As the beam propagates, r0

decreases. This is a consequence of the increasing

diffraction effect on ν.



Similarly, it is possible to obtain closed equations

for higher correlation functions of the envelope.

For example, the equation for the four-point correlation

function

⟨Ψ(r1, z)Ψ(r2, z)Ψ
⋆(r3, z)Ψ

⋆(r4, z)⟩.

Unfortunately, the study of the high-order equations

encounters significant technical difficulties.



Further, we focus on the study of the statistical

properties of the intensity of the electromagnetic

wave I = |Ψ|2. Unfortunately, it is impossible

to find a closed equation on I. Therefore, we

must inevitably first investigate correlations of

the envelope Ψ, and then use the results to

analyze statistics of I.



It is convenient to exploit the following dimensionless

parameter

γ = z/(k0r
2
0) ∼ D6/5z11/5/k0,

absorbing both, the random diffraction and the

geometrical characteristics. The case γ ≪ 1 corresponds

to the regime of weak scintillations and the regime

of strong scintillations is realized if γ ≫ 1.



In the regime of weak scintillations, the wave is

slightly distorted due to random diffraction. In

this case, I is close to the value for free wave

propagation. The correction caused by diffraction

δI = Ψ⋆δΨ+ δΨ⋆Ψ,

possesses Gaussian statistics if |δI| ≪ I since

both, δΨ and δΨ⋆, possess this statistics.



In the regime of strong scintillations, Ψ is formed

due to interference of signals from many random

diffraction centers. By virtue of the central limit

theorem, Ψ acquires Gaussian statistics, that is

P (Ψ) ∝ exp
(
−|Ψ|2/I0

)
.

Here P is the probability density function (PDF)

of Ψ.



In the argument of this exponent, there is nothing

else than I = |Ψ|2. Therefore, for intensity, the

probability density has the form

P (I) = I−1
0 exp (−I/I0) ,

where I0 is the average intensity at the observation

point. However, it covers a restricted range of I.



The random variable ν enters the equation

i∂zΨ+
1

2k0
∇2Ψ+ k0νΨ = 0,

as a factor at Ψ. In this case, one expects an

abnormally high probability of large values of |Ψ|
or of I = |Ψ|2. The probability is manifested in

“fat” tails of PDF, characterized by the stretched

exponents: lnP (I) ∝ −Iβ.



There are even two such tails. The first of them

has to be observed well in the regime of moderate

scintillations, β = 7/12. The second of them is

implemented in the regime of strong scintillations,

β = 7/13. Both exponents are less than one,

that is the tails are “fat”, indeed. The overall

picture is reflected in the diagram below.



ln γ

ln(I/I0)
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We performed numerical simulations of P (I).

We used the scheme with single screen and with

a number of screens. Each screen has a random

refraction index with statistics determined by the

Kolmogorov spectrum. The problem is to gain

enough statistics. For the purpose a lot of realizations

is used. We present results for the case of moderate

scintillations, γ ∼ 1.
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Here a dependence of lnP on I/I0 is plotted. Red

circles – average values, green line corresponds

to the best fit to a stretched exponent giving

the value β = 0.578, close to β = 7/12 = 0.583.

We see that the tail starts immediately from

I/I0 ∼ 1. To extract the tail for the cases of weak

and strong scintillations, much more statistics is

needed.


