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1. INTRODUCTION 

The Kelvin–Helmholtz instability [1] is a dynamic cor-
rugation instability of the interface separating two liq-
uids sliding with respect to each other. The concept of
such instability was originally introduced when consid-
ering ideal liquids, and, in the presence of dissipation,
it becomes ill-defined, because the relative motion of
two liquids in contact with each other is no longer a
solution to the hydrodynamic equations.

The simplest situation, where an equilibrium differ-
ence in velocities can be maintained at the surface of a
liquid, is the relative motion of the superfluid and nor-
mal components (a counterflow) in superfluid 

 

4

 

He. The
corrugation instability of the free surface of a superfluid
liquid in the presence of a counterflow along the surface
was studied in [2] (in relation to the experiments of
Egolf 

 

et al.

 

 [3]). It can be considered as an example of
the Kelvin–Helmholtz instability, in which both liquids
are located on the same side of the interface. An analo-
gous instability can appear when superfluid 

 

4

 

He slides
along the atomically rough interface separating it from
solid 

 

4

 

He [4]. Such an interface is known to account for
the equilibrium melting and crystallization of 

 

4

 

He [5,
6], and, as a consequence, its behavior resembles that of
the free surface of a liquid.

Recently, interest in surface instabilities of superflu-
ids has been revived [7–9] in relation to the experiments
on laser-manipulated Bose gases and the first experi-
mental observation of the Kelvin–Helmholtz instability
at the interface between two superfluids, 

 

3

 

He-A and

 

3

 

He-B [10]. In particular, it has been demonstrated [9]
that addition of a friction related to the motion of the
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interface with respect to container walls shifts the point
of instability from the well-known classical threshold
[1] to another value. This value does not depend on the
strength of dissipation and can be reproduced in the
framework of thermodynamic analysis by looking for
the instability of free energy calculated in the reference
frame of the normal component, which, in equilibrium,
is at rest with respect to the container walls. The
appearance of the same threshold in dynamic analysis
was ascribed in [9] to the symmetry breaking related to
the violation of the Galilean invariance by the consid-
ered friction force.

In this work, we return to the investigation of the
corrugation instability on the free surface of a super-
fluid liquid in the presence of a counterflow [2] taking
into account the viscosity of the normal component and
show that, for any finite value of viscosity, the instabil-
ity threshold is shifted to a viscosity-independent value,
which is in agreement with the results of [9]. However,
in our analysis, this phenomenon appears in the
absence of the friction force violating the Galilean
invariance. Therefore, the modification of the instabil-
ity criterion in the presence of dissipation is not a con-
sequence of the symmetry-breaking form of the fric-
tion, but has a more general nature.

2. DISPERSION RELATION

The calculation of the spectrum of surface oscilla-
tions in a superfluid liquid in the presence of a counter-
flow can be performed in the same way as the calcula-
tion of the spectrum of a gravitational wave in a normal
liquid with finite viscosity [11]. For frequencies small
in comparison with the frequency of the first and the
second sound, the mass and the entropy densities can be
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assumed to be constant. Accordingly, the conservation
laws for mass and entropy are reduced to the constraints

(1)

where 

 

v

 

s

 

 and 

 

v

 

n

 

 are the superfluid and normal veloci-
ties, respectively. In this limit, the Navier–Stokes equa-
tion for a superfluid liquid can be written as [12]

(2)

where 

 

ρ

 

s

 

 and 

 

ρ

 

n

 

 are, respectively, superfluid and normal
densities (

 

ρ

 

 = 

 

ρ

 

s

 

 + 

 

ρ

 

n

 

 being the total density); 

 

ρ

 

 is the
pressure; 

 

g

 

 is the free fall acceleration; and 

 

η

 

 is the vis-
cosity.

The solution to Eqs. (1, 2), satisfying the constraint
curl

 

v

 

s

 

 = 0 and corresponding to a small-amplitude sur-
face wave with frequency 

 

ω

 

 and wavevector 

 

q

 

 parallel
to the surface (we assume that, in equilibrium, the liq-
uid is situated at 

 

z 

 

< 0) can be chosen in the form

(3)

(4)

(5)

(6)

(7)

where superscript 

 

||

 

 refers to the component of a vector
parallel to the surface; 

 

γ ≡

 

 exp

 

i

 

(

 

qr

 

 – 

 

ω

 

t

 

);

(8)

 

A

 

, 

 

B

 

, and 

 

C

 

 are (arbitrary) constants; and the possibility

of an equilibrium counterflow (characterized by  

 

≠

 

) is taken into account.

Substitution of Eqs. (3–7) into the boundary condi-
tions describing the conservation of mass and entropy,

(9)

and mechanical equilibrium,

(10)

, (11)
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at the surface (whose deviation from the plane z = 0 is
denoted by ζ and surface tension by σ) shows that they
are compatible with each other for

(12)

The derivation of Eq. (12) does not require the assump-
tion that viscosity is small, so it is applicable for an
arbitrary value of viscosity.

3. INSTABILITY THRESHOLDS FOR ZERO 
AND FINITE VISCOSITY 

For ρs = 0 and σ = 0, Eq. (12) is transformed to the
dispersion relation of a gravitational wave on the free
surface of a normal liquid [11], whereas, in the limit of
η = 0, it is reduced to the equation

(13)

describing the spectrum of surface waves in a super-
fluid with the counterflow [2] derived in the framework
of the nondissipative two-fluid description. Here, v =

(ρs  + ρn )/ρ is the mass velocity and w =  + 
is the relative velocity in the superfluid. The form of
Eq. (13) shows that the roots with positive and negative
imaginary parts (the former correspond to growing cor-
rugation) exist only if the right-hand side can be nega-
tive, that is, if the absolute value of w exceeds wc0
defined by

(14)

with the instability taking place at q = ±(w/w)qc, where

 = ρg/σ.

On the other hand, for any finite η > 0, one of the
roots of Eq. (12) crosses the real axis already when

(15)

touches zero, that is, at

(16)

with the instability appearing at the value of relative
velocity lower than in the absence of dissipation,
although at the same value of q. Note that, in the limit
of zero temperature (when ρs  ρ), the criterion (16)
coincides with the Landau criterion for the creation of
ripplons in the reference frame of container walls.
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For S(q) sufficiently close to zero, the value of the
root crossing the real axis is given by

(17)

This shows that, for small viscosity and w just above
wc, the rate of instability development decreases with
decreasing η, contrary to what is naturally expected.

By looking where the free energy of a corrugation,
calculated in the reference frame of the normal compo-
nent, is no longer positively defined (such an approach
can be considered as a macroscopic generalization of
the Landau criterion), the threshold for the instability of
the interface between two different superfluids was
found in [9] to be

(18)

where F is a generalized restoring force, whose role in
the case of a free surface is played by ρg. In the limit
where the density of one of the liquids goes to zero,
Eq. (18) is reduced to our criterion (16) obtained for the
free surface of a single superfluid liquid.

4. CONCLUSION 
In this work, we have investigated the dynamic

instability of the free surface of a superfluid liquid
caused by the relative motion of superfluid and normal
components along the surface. The value of the insta-
bility threshold for finite viscosity, given by Eq. (16), is
found to be independent of viscosity, but lower than in
the absence of dissipation. The same criterion can be
obtained by looking for the thermodynamic instability
in the reference frame of the normal component.

An analogous modification of the instability thresh-
old was found [9] to take place at the interface between
two superfluids in the presence of friction with respect
to the reference frame related to container walls,2

which leads to violation of the Galilean invariance.
Note that in our problem the same phenomenon appears
in the situation where the form of dissipation does not
imply the explicit selection of a particular reference
frame. Nonetheless, the presence of dissipation (a finite
value of viscosity) turns out to be sufficient to produce
the same criterion for surface instability as in the case

2 The same type of dissipation was taken into account by Kagan [4]
when studying the instability of the quantum interface between
superfluid and solid 4He.

ω q( ) vn
0q

1
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ρswq iηq2+
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ρs1 vs1
0 vn

0
–( )

2
ρs2 vs2

0 vn
0–( )2

+ 2 Fσ( )1/2,=

where the form of friction leads to the direct violation
of the Galilean invariance.

The first experimental observation of the Kelvin–
Helmholtz instability at the interface between 3He-A
and 3He-B by Blaauwgeers et al. [10] unambiguosly
demonstrated that it does indeed take place not for the
classical, but for the modified value of the threshold.
According to our results, the same can be expected
from the instability on the free surface of superfluid
4He.
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