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Abstract – We show that the transition of Josephson junctions between the conventional and
π states caused by the decrease in temperature induces in a regular two-dimensional array of
such junctions not just a single phase transition between two phases with different ordering but a
sequence of two, three or four phase transitions. The corresponding phase diagrams are constructed
for the cases of bipartite (square or honeycomb) and triangular lattices.
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Introduction. – For several decades arrays of weakly
coupled superconducting islands have been the subject of
active experimental investigations [1] for many reasons,
in particular as a simple model system which allows one
to study the interplay between fluctuations, frustration,
disorder and other factors in a more controlled situation
than in bulk superconductors. However, these studies have
been restricted to arrays of conventional junctions whose
energy is minimal when the phases of two superconductors
are equal to each other.
The first experimental realization of an old theoretical

idea [2,3] about the fabrication of the so-called π-junction
whose energy is minimal when the phase difference on the
junction is equal to π was achieved only during the last
decade by Ryazanov et al. [4] who studied superconductor-
ferromagnet-superconductor (SFS) Josephson junctions
and observed a transition from the conventional state to
the π-state taking place with the decrease in tempera-
ture [3]. The experimental investigation of small arrays of
SFS junctions started almost simultaneously [5], but inso-
far has been restricted to very modest sizes [6].
Since the fabrication of more sizable arrays of SFS

junctions is definitely a matter of the nearest future,
the present letter addresses the question what happens
with a superconducting array of Josephson junctions
when the decrease in temperature induces a crossover
of the junctions to the π-state. Although one could
expect (from the evident change of the ground-state
structure) that this induces a single first-order transition
between two phases with different ordering, our analysis
reveals that this is never the case and in reality an

array experiences in the crossover region a sequence
of two, three or even four phase transitions each of
which is related with partial or complete destruction (or
restoration) of ordering. The structures of phase diagrams
and the natures of these transitions are established both
for bipartite lattices (square and honeycomb) and for a
triangular one.

Model. – An array of identical SFS junctions can be
described by the Hamiltonian

H =
∑

(jj′)

V (ϕj−ϕj′) , (1)

where ϕj is the phase of the superconducting order para-
meter on the j-th superconducting island, the summation
is performed over all pairs of neighboring islands connected
by a junction and V (θ) is a periodic even function of θ
which can have minima both at θ= 0 and θ= π. When
the contacts forming a junction have low transparency,
one can keep in the Fourier expansion of

V (θ) =−
∞∑

p=1

Jp cos(p θ)

only the first term because a typical value of Jp is strongly
suppressed with the increase of p [3].
However, in a SFS junction of appropriate width the

decrease in temperature T may force the value of J1
to pass through zero and change sign [7]. This leads to
the transition of the junction from the conventional state
(in which the deepest minimum of V (θ) is at θ= 0) to
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the π-state (in which the deepest minimum is at θ= π).
Naturally, in the vicinity of T0, the temperature at which
J1(T ) = 0, one has to keep also the next term in the Fourier
expansion of V (θ),

V (θ) =−J1 cos θ−J2 cos(2θ) . (2)

In the simplest situation the decrease of T leads to the
change of J1(T ) from positive to negative, while J2(T )
remains positive. Our aim consists in analyzing what phase
transition (or what sequence of phase transitions) takes
place in a regular array of identical SFS junctions when
they experience such a transition to the π-state (also
known as 0-π crossover).

Bipartite lattice. – First one has to understand what
would take place with the change of the sign of J1 in the
absence of thermal fluctuations. For J1,2 > 0 the minimum
of the Hamiltonian (1) with interaction (2) on any lattice
is achieved when all variables ϕj (defined modulo 2π)
are equal to each other, ϕj =Φ. Therefore, the ground
state is characterized by U(1) degeneracy related to the
simultaneous rotation of all phases.
The form of the ground state at J1 < 0 depends on the

structure of the lattice. We start by considering the case
of a bipartite lattice (square or honeycomb) and after that
will discuss the more complex case of a triangular lattice.
For any bipartite lattice the problem with J1 < 0 can be
mapped onto the problem with J1 > 0 just by rotating half
of the variables ϕj by π. In particular, this immediately
defines the form of the ground state at J1 < 0, which has
the same U(1) degeneracy as at J1 > 0 but a different (two-
sublattice) structure.
When J1 = 0, the energies of these two states are equal

to each other, as well to the energy of any state in which all
variables ϕj are equal either to Φ or to Φ+π. Therefore,
in the absence of thermal fluctuations the system would
experience at J1 = 0 a single phase transition between the
phases with different ordering. Note that this property is
not the consequence of keeping only two terms in eq. (2)
– for a more complex form of V (θ) the transition will be
shifted from the point where J1 = 0 to the point where
the two minima of V (θ) have equal depths. However, it
turns out that in the presence of thermal fluctuations the
single-transition scenario does not survive.
The finite temperature phase diagram of the XY -model

with a modified Berezinskii-Villain interaction whose main
features are analogous to those of eq. (2) with J1, J2 > 0
has been constructed in ref. [8]. In terms of the SFS array
problem with interaction (2) the main conclusions of these
works (confirmed in numerical simulations of ref. [9]) can
be reformulated and generalized as follows.
When both J1 and J2 are positive and much larger

than T , the system is in the phase with an algebraic decay
of the correlation function

C1(j1− j2) = 〈exp i(ϕj1 −ϕj2)〉 . (3)

For brevity we shall call this phase ferromagnetic,
although more accurately it should be called a phase with

algebraically decaying ferromagnetic correlations. But
since in two-dimensional systems with a continuous order
parameter the real long-range order is impossible [10]
and an algebraic decay of correlations [11] is as much
as one can get, the application of such a shorthand
is rather natural. In terms of SFS array this phase is
superconducting and is characterized by a finite superfluid
density.
The decrease of J1 down to J1 ∼ T induces a phase

transition of the Ising type related to the proliferation
of solitons (a soliton is a linear topological excitation on
crossing which the phase jumps by π). The existence of
such a transition is especially evident for J2 =∞ when the
model defined by eqs. (1) and (2) is reduced to the Ising
model with coupling constant J1, however it exists (and
has the same nature) also when J2 is less than infinite.
The proliferation of solitons leads to the replacement of
the algebraic decay of the correlation function C1(r) by
an exponential one. On the other hand, on both sides of
the transition the superfluid density remains finite, which
for J2 <∞ manifests itself in the algebraic decay of the
correlation function

C2(j1− j2) = 〈exp 2i(ϕj1 −ϕj2)〉 . (4)

It is clear that in the phase with such a behavior
of C1(r) and C2(r) the role of the order parameter is
played by exp(2iϕj) and therefore formally it can be
called nematic. Analogous nematic phase (induced by the
proliferation of solitons) is expected to exist in thin films
of superfluid 3He [12]. In the nematic phase of a SFS
array, the superconducting current can be associated with
the motion of pairs of Cooper pairs and therefore this
phase can be identified by studying the periodicity of
the persistent current in the array with annular geometry
penetrated by a magnetic flux (the period has to be equal
to half of the superconducting flux quantum).
The relevant topological excitations in the nematic

phase are half-vortices, that is the vortices with topological
charges ±1/2 which are the end points of solitons. The
interaction of these objects is logarithmic and keeps them
bound in pairs, which allows one to treat solitons as
closed lines playing the role of domain walls in the Ising
model. With decrease in J2 the strength of the logarithmic
interaction of half-vortices goes down and at J2 ∼ T it
becomes too weak to keep them bound in pairs. The
phase transition related to the dissociation of bound pairs
of half-vortices is of the Berezinskii-Kosterlitz-Thouless
(BKT) type. It differs from the standard BKT transition
by the value of the superfluid density jump, which is larger
by a factor of 4. In the disordered phase the superfluid
density vanishes and correlation function C2(r) also decays
exponentially.
For J2� T the disordered phase is separated from the

ferromagnetic phase existing at large enough ratio J1/T
by the standard BKT transition related with the dissoci-
ation of pairs of integer vortices (exactly like at J2 = 0).
With the decrease in the ratio T/J2 one encounters a
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Fig. 1: (Colour on-line) Schematic structures of phase diagrams
of SFS arrays with (a) bipartite lattice and (b) triangular
lattice. Ferromagnetic (F), nematic (N), antiferromagnetic
(AF) and disordered (D) phases are separated from each
other either by continuous (continuous bold lines) or first-
order (dashed bold lines) phase transitions. The double line
separating AF and D phases in (b) stands for the sequence of
BKT and Ising transitions with very small separation. Curved
arrows going from right to left show different paths of the
evolution of an array with the decrease in temperature.

tricritical point, where this BKT transition is transformed
into a first-order one (with larger than universal jump
of the superfluid density). A change in the nature of
the transition can be associated with switching-on of a
different mechanism for the destruction of the ferromag-
netic ordering. On the other side of the tricritical point
the disordering is triggered not by the integer-vortex
pair unbinding but by the proliferation of solitons taking
place when the logarithmic interaction of half-vortices is
too weak to keep them bound in pairs. This induces the
simultaneous unbinding of integer vortices which takes
place not because their direct logarithmic interaction is
insufficiently strong but because it is screened by the
presence of free half-vortices.
The schematic structure of the phase diagram contain-

ing ferromagnetic (F), nematic (N) and disordered (D)
phases is shown in fig. 1(a) in coordinates J1/T and T/J2.
Although the above analysis refers only to the right half

of this figure (with J1/T > 0), in the case of a SFS array
with a bipartite lattice it is clear from the symmetry of
the problem that at negative values of J1/T the phase
diagram has exactly the same form as at positive ones,
the only difference being that the phase with the ferro-
magnetic algebraic correlations is replaced by the phase
with the antiferromagnetic algebraic correlations (which
have the two-sublattice structure).
The evolution of a SFS array with the decrease in

temperature is shown in fig. 1(a) by curved arrows going
from right to left. From the structure of the phase
diagram it is clear that when thermal fluctuations are
taken into account the direct phase transition between the
ferromagnetic and antiferromagnetic phases is no longer
possible and is replaced by a finite region containing either
one or two intermediate phases.
In particular, for sufficiently low values of T0/J2(T0)

the evolution goes along the path F-N-AF, that is, the
ferromagnetic and antiferromagnetic phases are separated
by the nematic phase, both phase transitions being of the
Ising type. On the other hand, for sufficiently high values
of T0/J2(T0) the ferromagnetic and antiferromagnetic
phases are separated by the strip of the disordered phase
and the phase transitions are either of the BKT type or
of the first order. For intermediate values of T0/J2(T0)
the evolution has to take place along the path F-D-N-AF
involving three different phase transitions and if in the
region where |J1(T )| is comparable with T or smaller
the ratio T/J2(T ) changes extremely little (by less than
few percent), the path F-N-D-N-AF involving four phase
transitions is also possible, although it hardly can be called
a typical one.

Triangular lattice. – In the case of a triangular lattice
the structure of the phase diagram at J1 > 0 is basically
the same as for a bipartite lattice, whereas at J1 < 0 the
situation is essentially different. The main reason for that
is that at negative J1 the structure of the ground state is
different for small and for large values of |J1|. In particular,
for −9J2 <J1 < 0 the minimum of energy is achieved when
on each triangular plaquette the phase difference on two
bonds is equal to π and on the third one to zero. It is
clear that in any configuration satisfying this rule the
variables ϕj can acquire only two values which differ by
π (for example, Φ and Φ+π), from where it follows that
in terms of the nematic order parameter exp(2iϕj) the
system is perfectly ordered.
After introducing bimodal variables σj =±1 (below

they are called pseudospins) such that

exp(iϕj) = exp(iΦ)σj, (5)

one finds that the above-mentioned rule is satisfied as
soon as each triangular plaquette contains both positive
and negative pseudospins. This means that the set of the
allowed configurations of pseudospins σj coincides with
the set of the ground states of the antiferromagnetic
Ising model with triangular lattice (the AFMITL model).
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The number of such configurations grows exponentially
with the size of the system [13]. The exact solution
of the AFMITL model [13,14] at zero temperature is
characterized by an algebraic decay of the correlation
functions [15], in particular, 〈σj1σj2〉 ∝ |j1− j2|−1/2. These
correlations have the three-sublattice antiferromagnetic
structure, that is are positive when the two pseudospins
belong to the same triangular sublattice and negative
otherwise [15]. From the form of eq. (5) it is then clear that
at zero temperature C1(j1− j2) coincides with 〈σj1σj2〉
and therefore has a three-sublattice antiferromagnetic
structure.
At J1 <−9J2 the ground state of (1) has exactly the

same structure as at J2 = 0. In this state each of the three
sublattices is ferromagnetically ordered but the phases in
the different sublattices are rotated with respect to each
other by±2π/3 [16]. The full set of ground states is charac-
terized by a combined U(1)×Z2 degeneracy, where U(1)
corresponds to the simultaneous rotation of all phases and
Z2 can be associated with the antiferromagnetic ordering
of the chiralities of the triangular plaquettes. Thus in
the absence of thermal fluctuations the phase diagram
of a SFS array with triangular lattice would incorporate
three different phases, the phases with ferromagnetic and
antiferromagnetic ordering being separated by a wide
strip of the phase with perfect nematic ordering and an
algebraic decay of antiferromagnetic correlations.
At finite temperatures the perfect antiferromagnetic

ordering existing at J1 <−9J2 is naturally replaced by
an algebraic decay of C1(r), however a finite superfluid
density and the genuine long-range order in staggered
chirality survive. It is known both from numerical simula-
tions [17] and analytical considerations [18] that at J2 = 0
the disordering of the system with the increase in tempera-
ture takes place through the sequence of two phase transi-
tions which are situated very close to each other. The first
of them is related to vortex pairs dissociation and is of the
BKT type, whereas the second is related with domain wall
proliferation and is of the Ising type. It follows from the
analysis of the mutual influence of the topological excita-
tions of different types [18] that the same scenario can be
expected to hold also when J2 > 0.
The properties of the nematic phase are influenced by a

small finite temperature more drastically than that of the
antiferromagnetic phase. It is known both from the exact
solutions [13,14] and from the mapping onto a solid-on-
solid (SOS) model [19] that at any finite temperature the
isotropic AFMITL model is in the disordered phase with
a finite correlation radius (which diverges when T → 0).
This immediately allows one to conclude that at T > 0 the
nematic phase is characterized by an exponential decay
of C1(r). On the other hand, spin wave fluctuations lead
to an algebraic decay of C2(r). These properties are in
perfect agreement with those of the nematic phase at
J1 > 0, which is no surprise since this is just the same
phase. Exactly like at J1 > 0, at J1 < 0 the nematic phase
is characterized by a finite superfluid density and its

disordering takes place via the BKT phase transition
related to the dissociation of half-vortex pairs. One more
example of an XY -model in which the phase transition
into a disordered phase is related to the dissociation of
half-vortex pairs is the frustrated XY -model with dice
lattice and one-third of flux quantum per plaquette [20].
Since at −9J2 <J1 < 0 the nematic phase is charac-

terized by a finite residual entropy S0 ≈ 0.323 [13], the
first-order transition line separating it from the antiferro-
magnetic phase at finite temperatures is shifted to larger
values of |J1| (in particular, at low temperatures it takes
place at J1(T )≈−9J2(T )− 2S0T ). Together with what
we already know about the disordering of the antiferro-
magnetic and nematic phases this allows us to draw the
schematic phase diagram for the case of a triangular lattice
shown in fig. 1(b).
Like in fig. 1(a), curved arrows going from right to

left show the evolution of the system with the decrease
in temperature. The four arrows present in fig. 1(b)
correspond (starting from the lowest one) to scenarios
F-N-AF, F-D-N-AF, F-D-AF, and F-D-C-AF, respec-
tively. Here C denotes the phase with long-range order in
chirality and vanishing superfluid density which separates
AF and D phases at sufficiently high values of T0/J2(T0).
Like for a bipartite lattice, the four-transition scenario
(involving the path F-N-D-N-AF) is also possible if the
region where |J1(T )| is comparable with T or smaller is
sufficiently narrow.

Conclusion. – In the present letter we have investi-
gated what happens with a phase-coherent array of SFS
junctions when the decrease of temperature leads to the
crossover of the junctions to the π-state. The correspond-
ing phase diagrams have been constructed for the cases of a
bipartite lattice (square or honeycomb) and of a triangular
lattice. We have shown that the transition from the coher-
ent phase existing well above the crossover to the coherent
phase existing well below the crossover is never direct and
these two phases are always separated by one or more
intermediate phase(s). Naturally, the same approach can
be used to construct the phase diagrams in the vicinity of
the second crossover (from the π-state back to the conven-
tional state) if it does exist. We hope that our results will
stimulate more active experimental investigations of SFS
junction arrays.
The Hamiltonian (1) can be also used for the description

of a planar magnet with both bilinear and biquadratic
exchange in the situation when the biquadratic exchange
is ferromagnetic. For the case of the antiferromagnetic
biquadratic exchange such a system with a triangular
lattice has been investigated by Park et al. [21].
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H. W. J., J. Phys. A, 17 (1984) 3559.

[20] Korshunov S. E., Phys. Rev. Lett., 94 (2005) 087001.
[21] Park H. J., Onoda S., Nagaosa N. and Han J. H.,

Phys. Rev. Lett., 101 (2008) 167202.

17004-p5


