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The quantum solid-on-solid (SOS) model for the free surface of a crystal is 
studied at zero and finite temperatures. In addition to the usual roughening 
transition, this model also exhibits a superfluid transition. The phase diagram 
is constructed. We also formulate and study a quantum SOS model for the 
solid-liquid interface, which takes into account the motion and the compressibil- 
ity of the liquid and solid. The existence of a phase transition at zero temperature 
is shown. The phases differ in the form of the excitation spectrum. In both 
interface models the interface at zero temperature is smooth. The quantum 
effects only slightly reduce the temperature of the roughening transition in 
comparison to the classical value. 

1. INTRODUCTION 

Following the pioneering work by Andreev and Parshin 1 and the 
discovery of  freezing-melting waves on the solid-liquid 4He interface, 2 
quantum phenomena on crystal faces have become the subject of intensive 
theoretical and experimental studies. 

The main assumption made by Andreev and Parshin, 1 of the possibility 
of quantum roughening at zero temperature for a great enough interface 
hopping of atoms, was criticized by Fisher and Weeks, 3 who noted the finite 
amplitude of the zero oscillations of a crystal surface (in contrast to the 
case of thermal fluctuations) and the consequent sensitivity of the position 
of the interface to the atomic crystal structure. Accordingly, they stated that 
any face must be smooth at absolute zero. 

In a previous paper 4 we considered a simple model of the quantum 
interface, corresponding to atomic transitions without the excitation of the 
liquid, i.e., hopping to and from the Bose condensate, with the superliquid 
being in the ground state. In this model there is no phase transition with 
respect to a quantum parameter at zero temperature and any face is smooth, 
as was conjectured by Fisher and Weeks)  
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In this paper we investigate phase transitions in a model where atoms 
of the crystal hop only along its surface without changing their number. 
Such a model describes faces of a quantum crystal existing at zero pressure 
and was introduced by Fradkin, 5 who has shown that at zero temperature 
the crystal faces are smooth. 

In addition, we'construct a model for the solid-liquid 4He interface 
with excitation of the superfluid and describe the phase transitions in such 
a case• 

The previous result concerning the smoothness of the crystal f aces  3-5 

is valid here, but in these models other kinds of phase transitions also 
appear• Some results of this paper have been published previously: 

2. VACUUM-QUANTUM CRYSTAL INTERFACE 

The quantum solid-on-solid (SOS) model of the free surface of a crystal 
introduced by Fradkin 5 has the Hamiltonian 

H =  Z ~(nj-n~) 2- (a?a;+a2aD (1) 
(J0 

The integer variables nj are described on the sites of a two-dimensional 
lattice and represent the height of the crystal surface with respect to a certain 
level• The summation in (1) is performed over pairs of nearest neighbors. 
The first term in the square brackets is the potential energy related to the 

• + - -  • - - l -  configuration of the surface. The operators aj and aj change nj into nj 1 
and n j -1 ,  respectively. Thus the product afa~ describes the hopping of 
an atom from site l to site j. For simplicity it is assumed in (1) that atoms 
hop only to nearest neighboring sites and that the hopping probability/x 
does not depend on the configuration {n:}. 

Introducing variables ~o: that are Hamiltonian conjugate to nj, we can 
rewrite (1) as 

H = Z  [ J ( n ; - n l ) 2 - / ~  cos (q~j-~pt)]" nj=-i 0 (2) 

Fradkin 5 did not deal directly with (2), but introduced instead a sine-Gordon 
Hamiltonian with continuous variables n~ that has the same symmetry as 
(2). He showed that for such a Hamiltonian at zero temperature the crystal 
surface is smooth for any finite ratio I~/J. He also showed that the tem- 
perature of the roughening transition TR does not depend on the magnitude 
of the quantum parameter/~. 

We stress that the Hamiltonian (2) has two independent groups of 
symmetries: (1) the discrete group of a simultaneous shift of all n /and  (2) 
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the continuous group of  a simultaneous rotation of  all ~pj. Accordingly, 
there must be two different phase transitions. The transition from a rough 
to a smooth phase of the surface leads to the spontaneous breaking of first 
symmetry. The existence of the other phase transition becomes evident in 
the case J = 0, when the Hamiltonian (2) reduces to the Hamiltonian of  the 
classical X Y  model, which is well known to have a phase transition (at 
finite temperature) connected with the dissociation of vortex pairs. 7-1° 

We intend to verify that this second transition also exists in the case 
of nonzero J. In order to do this, we begin with the investigation of the 
model given by (2) at zero temperature. The method we use enables us also 
to draw conclusions about the smoothness of  the surface directly for the 
Hamiltonian (2). 

Fo r /x  = 0 the energy (2) of the ground state is also zero. The lowest 
excited states have the energy Jz/2 (z is the number of  nearest neighbors). 
These states are highly degenerate (twice the number of  lattice sites). In 
the case /z << J we can treat (2) with the help of perturbation theory. The 
first-order correction splits the excited level Jz/2 into a band with a width 
z/z, but does not affect the energy of the ground state. Taking into account 
higher order corrections, we obtain a finite value of the excitation gap, 
which can be written as 

½z(J-~)+ o(~:/J) 

for sufficiently smal l /x/J .  
In the case/z  >> J it is convenient to work with the functional integral 

representing the Feynman transition amplitude ~1 for the Hamiltonian (2). 
This amplitude can be written as 

r r- i ] Z = lim [I dnj(t) d~oj(t) 
7"-~0 j t  Lmj( t )=--oo J--oo --or 

(3) 

where we have performed the transition to imaginary discrete time and have 
replaced summations over nj(t) by integrations, simultaneously adding 
delta-functional multipliers in the form of  sums over mj(t). 

For /z >> J one can evaluate this functional integral by calculating 
different terms of the sum mj(t) with the help of the saddle point method 
(this procedure is explained more thoroughly in Ref. 4, where we treated 
a simpler quantum SOS model). The extremum of the action in the exponent 
in Eq. (3) corresponds to the trajectory satisfying the classical equations of  
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motion for ~ and n: 

10H+2~.irfij J i-~-/: - f i  O ~  :-fi 02 nj + 2crirhj( t) 

r~j(t) = ~ m(ti) 8(t - ti) 
t, ( 4 )  

anj 1 aH _ ~  
i . . . . .  [sin (~j+~ - ~j) - sin (,pj - ~_t~)] 

at fia~j h v 

- fi v sin av~ ~ 

where av denotes the lattice gradient. 
Consider the solution of Eqs. (4) corresponding to mj(t) nonzero at 

only one site (say j = 0) at one single moment of time (say t = 0). After 
excluding n from Eqs. (4), one obtains an equation for q~: 

a2q~J0t 2 ~ -~a~  a , h  sin a,cCj = 2¢rO rhj = 21rmoO 6(t) (5) 

The linearized version of Eq. (5) under Fourier transformation (in 
space-time) becomes a linear algebraic equation. Its solution for small k, 
co is 

2 ¢rico 
~o(k, co) - h_2jtz(ak)4 + co2 (6) 

where a is the lattice spacing. 
The left-hand side of Eq. (5) has the form of the divergence of some 

vector constructed from the derivatives of ~ (more precisely, their finite 
difference counterpart). If we multiply (5) by t, we obtain an equation 
whose left-hand side also has the form of a divergence [of a vector with 
components (t O~/Ot-q~, Otto ~ sin 0v~p) ]. This property of Eq. (5) enables 
us to find its solution at large distances (in space-time) where the continuous 
approximation is valid. The singularity on the right-hand side determines 
this solution uniquely. Since large distances correspond to small momenta 
and frequencies, we have 

q~ (k, co ) = ~o(k, co) + higher order terms in k and co 

Combining this result with Eqs. (4), one can find the Fourier transform 
of nj(t), which we shall denote as 2zriGo(k, co). For small k 

h 
Go(k, co) = jk2+ (1/tx)(hco/a2k)2 (7) 
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Go(k, to) coincides with the "bare" (for continuous n) Green's function 
(correlator (n~n_k,_o~)). It can be obtained from (2) if one neglects the 
discreteness of n and the periodicity in q~, i.e., substitutes -1 +½(~j-ql)  2 
for - c o s ( ¢ j - q ~ ) .  We see that the bare excitation spectrum for long 
wavelengths corresponds to w -  k 2. 

The action on the extremal path considered here (in field theory it is 
called an "instanton") is large [proportional to (tx/J) ~/2] but finite. The 
convergence of the corresponding integral is connected with the form of 
Go(k, to) for small k and to, which is known exactly. Thus the terms with 
ms(t) ~ 0 are relatively small. For a typical term in Z [Eq. (3)] the nonzero 
mr(t ) (which can be thought of as charges of "instantons") are far from 
one another (in space-time). 

For /z >> J Eq. (3) can be rewritten as the partition function of the 
instanton gas with the interaction go(R, t), 

Z c c y ~  e x p [ - ½  Y~ 4~r2go(Rj-Rf, t-t')mj(t)m;(t')] (8) 
mj(t)  j,j ' ,t,t '  

where go(R, t) results from the Fourier transformation of Go(k, to), and 
g0(0, 0) oc (~/j),/2. 

The concentration of instantons in space-time is low: 

C - (/z3J) 1/4 exp [-Cl(tZ/J) ~/2] (9) 

where the dimensionless coefficient Cl depends on the exact form of Go for 
large k and to. The quantity cl(tx/J) 1/2 is the action on the extremal "one 
instanton" path, which is calculated by means of Go. The calculation of 
the preexponential factor in Eq. (9) requires Gaussian integration in the 
vicinity of the extremal path (for details see, e.g., Ref. 12). 

Thus in the case of /z >> J all the conditions for the validity of the 
self-consistent approximation (SCA) are fulfilled. The long-range interac- 
tion of charges is small for typical distances between them. The mutual 
screening of the changes affects the Green's function. In the SCA this change 
corresponds to adding the constant self-energy, which is proportional to C: 

G-'( k, to)= Go'( k, w)+ ( 47rZ/h )C (10) 

where C must be expressed in terms of G self-consistently. A more thorough 
treatment changes higher order terms in k and w in Eq. (lO), which are of 
minor significance. 

It is clear from Eq. (10) that notwithstanding the finite concentration 
of instantons, the spectrum of excitations remains gapless. For small k its 
form becomes acoustic, to = csk (c2oC C). 

Equation (10) is valid only for sufficiently large Iz/J when the saddle 
point method can be used. We have established previously that in the 
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opposite limit of  small I~/J the spectrum has a gap. Thus there is a phase 
transition at zero temperature. In addition to the change in the form of the 
spectrum this transition also effects the behavior of the correlation functions. 
If  one considers the correlation function (cos [ ~ j ( t ) -  q~t(t)]) for [ r j -  rtl ~ oo 
one can verify that for the low-(/~/J) phase it decays exponentially, while 
for the high-(/z/J)  phase it has a finite limit. Thus the transition at zero 
temperature is of  the same nature as the transition at zero J, when the model 
(2) coincides with the classical X Y  model. The surface of this phase 
transition in (J,/x, T) space connects a straight line in the (T,/z) plane with 
a straight line in the (J,/z) plane. 

We stress that this transition has nothing to do with the roughening 
transition. Both phases are smooth at zero temperature. As we have shown 
previously 4 for a wide class of models, including (2), the energy of a step 
on a crystal surface is determined by a gap in the correlation function for 
zero frequency and not by a gap in the excitation spectrum. Thus, for 
G(k, co) defined by Eq. (10) the energy of  a step is finite and the surface 
is smooth. The phase transition in the X Y  model is associated with the 
dissociation of vortex pairs. 8'9 The vortices are nontrivial solutions of Eq. 
(4) for mj(t) = 0. The existence of such solutions is due to the periodicity 
in ~o (which enables us to consider the solutions with nonzero circulation) 
and due to the invariance of the Hamiltonian (2) with respect to the rotation 
of all ~. 

In the case J = 0 only stationary vortices are permitted. The action 
corresponding to a single vortex is proportional t o / x / T  [at finite temperature 
T the time integration in the exponent of  Eq. (3) is restricted to the interval 
(0, h~ T)] and diverges logarithmically with increasing size of  the system. 
Only for pairs of vortices with opposite signs is the action finite. At 
suffÉciently high temperature, vortex pairs dissociate and this causes the 
action of a single vortex to become finite due to screening. 9'1° 

For T = 0 this mechanism does not operate, but for J ~ 0 other factors 
make the creation of a free vortex possible. A vortex can move in imaginary 
time from site to site, and vortex pairs can be created and annihilated, thus 
forming vortex loops in space-time. There is also a finite density of instan- 
tons in the system. It is possible to show that the presence of instantons is 
sufficient to induce the formation of free vortices at T = O. 

Let us consider the interaction of an instanton and a vortex. Almost 
everywhere but near the center of the instanton and the vortex core the 
absolute value of  Or~ is small compared to unity. This enables us to substitute 
the first few terms of the Taylor expansion for cos (~o~ - q~t). In the quadratic 
approximation, however, the interaction between the instanton and the 
vortex is absent and the action is the sum of separate contributions for the 
instanton and the vortex (solenoidal and potential fields of the velocity do 
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not interact). The interaction arises only in the higher terms of the Taylor 
expansion. The sign of the most important quartic term corresponds to the 
attraction of a vortex and an instanton of any charge. The magnitude of 
the interaction is given by 

V-u.--~4 I dtd2T~(O~Dinst~2(O~Dv°rtl2 
in the continuous approximation, where ~Dinst and ~vo~ denote the field for 
the instanton and the vortex, respectively. 

The main contribution to the integral comes from the center of the 
instanton, because 0v~inst falls off rapidly at a distance of several atomic 

2 lengths from it. For this reason 0v~Oinst can be considered as a constant 
proportional to R -2, where R is the distance between the instanton and the 
vortex. Performing the integration over dt d2r, we see that 

Voc -{/~ 1/2-~1 (11) 
\ J ]  R 2 

The action for a "bare" vortex of unit length in the time direction is 
positive and logarithmically divergent. It is clear from Eq. (11) that the 
total contribution from the vortex interaction with an instanton gas of finite 
concentration C also is logarithmically divergent. For large enough C this 
negative term can dominate and induce formation of free vortices. There 
are also other causes diminishing the vortex action (e.g., vortex loops in 
space-time). 1 

As mentioned above, this phase transition has the saflle physical origin 
as the phase transition in the plane X Y  model and corresponds to the 
destruction of the surface superfluidity in this model. This ~ superfluidity has 
the usual meaning: the possibility of nondissipative mass flow along the 
quantum crystal face at sufficiently small J. 

3. THE STRUCTURE OF THE PHASE DItLGRAM 

In order to have a phase diagram we must considel the case of finite 
J, /~, T. For finite temperatures, Eq. (7) for a "bare" Green's function is 
also valid but with discrete frequencies wt=2~dT, whe'e l is an integer. 
Accordingly, the interaction of the instantons changes ld becomes 

g(R,t)--,,-~-~ln[R[+ T Y, f ,d2k z , ,2 .  [ , ,  ~ . . . .  2-,; ei(kR-~°~t) (12) 
L'Ti~J l,~O J [Z"l ' i ') Jl~ -r[~/tz)[nw/a K)~ 

I 
The appropriate chemical potential of the instanton ~(0) is logarithmi- 

cally divergent at small k and we have g (0 )~  (T/2~rJ)lh (L/Ro), where L 
1 
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is the macroscopic length (the size of the interface) and R o -  
exp [~cl(tz/J)l/2]. Thus the quantum hopping affects only Ro. According to 
a well-known entropy argument, the phase transition occurs at 2 T~ ~J.~ 1. 
It manifests itself in the appearance of "free" instantons. 

It follows from the renormalization group analysis by Kostertitz 1° that 
at T / J <  7r/2 the face will be smooth for any Ro. Hence the temperature 
of the phase transition TR in this model decreases with increasing/z, but 
cannot be lower than T~ in = "rrJ/2. This phase transition is the usual rough- 
ening transitionJ 3'~4 The free energy of a step on the face [which is defined 
by the zero frequency correlator 4 G(~o =0,  k)] vanishes at the transition 
temperature. 

Summarizing this result and the results of the previous section, we 
obtain the picture of the phase transitions shown in Fig. 1. The smface of 
the roughening transition (which is almost plane) connects the/z  axis and 
the straight line J~ T = const on the plane/x = 0 for the roughening transition 
of the classical discrete Gaussian model. ~4 

In addition, there is a surface of the transition to the superfluid phase 
(on the crystal face) which connects the straight l i n e / z / T  = const on the 
plane J = 0 corresponding to the classical 2d X Y  model, and the straight 
line tz/J = const on the plane T = 0 corresponding to the vanishing of the 
gap in the elementary excitation spectrum. So we have four different phases: 
phase 1 corresponds to the rough superliquid phase, phase 2 to the rough 
normal phase, pase 3 to the smooth normal phase, and phase 4 to the 
smooth superfluid phase. The instantons are present only in the smooth 
phases (3 and 4), and the free vortices exist only in the normal (nonsuper- 
fluid) phases (2 and 3). It is possible that the line where all four phases 
coexist splits into two triple lines. 

Note that in the smooth superfiuid phase 4 special "faceting" waves 
with acoustic spectrum ~o = c~k can be observed, analogous to freezing- 
melting waves. These "faceting" waves also correspond to quantum oscilla- 
tions of the crystal faces, but in the absence of the melt, due only to quantum 
motion of atoms of the crystal near its free surface. 

Actually, quantum effects are observed in 3He and 4He crystals only. 
These crystals exist only at nonzero pressures and the model considered 

Fig. 1. Possible phase diagram for a quantum SOS model of a crystal- 
vacuum interface. 
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cannot be applied to them directly. It is possible that this model can be 
applied to hydrogen or crystals of other inert gases that exist at zero pressure. 

We can speculate also that this model can be applied to the solid-normal 
liquid 3He interface. This can be justified if one assumes that an atom 
cannot go from the solid to the liquid without strongly exciting the liquid. 
If  we exclude the excited states of the liquid in the second order of 
perturbation theory, we obtain the effective Hamiltonian in the form of 
Eq. (2). 

4. SOLID-SUPERFLUID INTERFACE 

In the simplest quantum SOS model considered by us previously 4 the 
motion of the liquid was not taken into account. Instead it was supposed 
that the atomic exchange between the solid and the liquid does not change 
the state of the latter. This assumption is justified only in the case of equal 
densities of the crystal pc and of the liquid PL. 

Constructing a more realistic model for the quantum tunneling of an 
atom from the crystal to the liquid, we assume the appropriate term in the 
Hamiltonian in the form i~jaf. The quant i ty /~  is complex and since it is 
associated with the change of the total number of atoms in the liquid, its 
phase X; coincides with that of the Bose condensate of the superfluid (i.e., 
4He). The appropriate surface energy takes the form 

J 
Hs =~ ~ (nj - n;)2-A E cos ( ~  -Xj) (13) 

(jl) j 

Here Xj is the value of the condensate phase X on the face site j, and nj 
denotes the position of the interface with respect to the undeformed solid 
(in lattice units); as previously, nj = - i  O/O~j. For simplicity the summation 
in the first term is restricted to the nearest neighbors, as in Section 1, and 
the real quantity A is assumed to be independent of the configuration {n~}. 
Only the long-wave properties of the model are important and the exact 
form of the lattice cutoff for hydrodynamic quantities is of no significance. 

In order to have a consistent quantum mechanical model we must 
define the action on the phase trajectories of the system. It is quite natural 
to take the total action as the sum of the three actions S£ + Sc + Ss for the 
liquid, the crystal, and the interface, respectively. 

The action of the superfluid is given by 

S L = - f  dtfvLd3r[pch~t+PLmh~mm(VX)2+Ec(pL)] (i4) 

where EL(PL) is the internal energy density of the liquid and m is the atomic 
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mass, and the interaction is performed over the real volume of the liquid 
VL restricted by the interface. 

The form of the action for the crystal is taken from elasticity theory: 

Sc = dt d3r PC-dr 2pc 
Vc 

where u is the displacement vector, Ec is the internal energy density, which 
depends on the deformation tensor u ik, Vc is the real volume of the crystal, 
and Pc is the volume density of the momentum Pc = pcVo 

The interface part of the action is 

S s = ' f  dt(~njO_-~J+ Hs~ (16) 
j ot / 

where Hs is given by Eq. (13). 
In Ref. 6 we have used in the surface energy the term - A  cos (qj - AXj) 

with h # 1 and a slightly different form of SL. Both versions have the same 
equations of motion and are equivalent. 

As in the previous sections, we investigate the model in the limit of an 
almost rough interface with small J and large A and in the opposite case 
of small A, when the interface must be close to a plane. 

In the first case we can transform the partition function (or Feynman 
amplitude for the imaginary time; see Section 1) into the partition function 
of some instanton gas, using the saddle point method. The appropriate 
equations of motion, obtained by the variation of the action in terms of the 
independent variables X, PL, PC, and u, have the usual form of hydrodynamic 
equations for the liquid and that of elasticity theory for the solid: 

2 

O p t  +diV(pLVt)=O; ~ OX ~-V-L+ I2L=O (17) 
m Ot 2 

du d ~ Oc/k 
vc = dt; p c - ~ v c -  Ox k (lg) 

where VL = ( h / m ) ( V x )  is the velocity of the liquid, I~L=OFL/OPL is the 
chemical potential of the liquid, and o -ik is the stress tensor of the solid. 

The variation of the action in terms of the surface quantities ~, Xs, us, 
and n (n is treated as continuous) gives, after some transformations, the 
boundary conditions 

h Onj/Ot = A sin (q~j -Xj) 

p L ( v ~ -  w ~) = p c ( v ~  - w ~) 

i v i v  i v pL8 i~ + VL(VL-- W~)pL = --0~ + Vc(Vc -- w~)pc 

(19) 

(20) 

(21) 
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1 h2 

where ~, denotes the normal to the interface, w ~ is the velocity of the normal 
motion of the interface, PC is the pressure of the liquid, A L is the lattice 
Laplacian, and ~¢(PL) = (Ec +PL)/PC" 

Equations (20) and (21) are mass and momentum conservation 
equations, respectively. Equation (22) is a generalisation of the Herring 
condition for the solid-liquid interface. This equation includes a specific 
interracial inertial term, which was introduced phenomenologically by 
Puech and Castaing. is The other term on the right-hand side of Eq. (22) is 
related to the curvature of the interface with respect to the undeformed 
crystal. Comparing Eq. (22) with its phenomenologically derived dissipative 
counterpart, ~6 one can verify that it is only this "reduced" curvature that 
must enter the equation. In what follows, for simplicity we neglect the 
compressibility of the solid and use the linearized equations of motion in 
the continuous limit with the lattice cutoff. 

In this approximation we obtain from Eqs. (17) and (19)-(22) the bare 
Green's function for variable n: 

h 
Go(k, w) - j k  2 + [h2/ Aa 2 + oe~d2( k2 + o)2/c2)_1/2]w2 

(23) 
( p c  - PL) 2 

Pe~ - -  

P L  

where a is the lattice constant (in the plane of the face), d is the interplanar 
distance, and c 2 = OpJOpL is the squared sound velocity for the liquid, and 
we again are dealing with imaginary time. The poles of Eq. (23) define the 
bare spectrum of surface excitations (if the discreteness of n is neglected). 
This spectrum coincides with the phenomenologically derived spectrum of 
freezing-melting waves (to oc k 3/2 for small k) 1 with the interface inertial 
term taken into account. 15 

The Green's function (23) determines the bare interaction of the instan- 
tons (which arise because n is an integer). Taking into account the mutual 
screening, we again obtain (in self-consistent approximation) a Green's 
function of the form given by Eq. (10) with Go from Eq. (23). Adding the 
k-indepeendent self-energy part makes the energy of the step finite for all 
finite values of the parameters. 

Nonetheless, the spectrum of excitations corresponding to the thus 
modified Green's function remains gapless. For the smallest k it lies slightly 
lower than the spectrum of the volume sound waves in the liquid to = cLk. 
There is also an intermediate region in k space where this spectrum can be 
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approximated as to oc k ~/2, whereas for a-l>> k >> ~:-~ the spectrum remains 
a l m o s t  k 3/2. 

The dilute instanton gas approximation is valid provided (1) the action 
S~ corresponding to one instanton is large in comparison with unity, and 
(2) the wave function of  the ground state is fairly well localized in the 
vicinity of the minima of the periodic potential - A  cos (~0j-Xj). For large 
enough A [when we can omit the first term in the square brackets in Eq. 
(23)] the magnitude of S~ does not depend on A, 

C2h 
S1 ~- (jp¢fra 3) u2 d , c2 - 1 (24) 

and is sufficiently large if the magnitude of J in atomic units is small. For 
the QSOS model 4 and the model of Section 1 the second condition is 
automatically satisfied in virtue of the first one. For the solid-liquid model 
considered the second condition is satisfied only if A is large in comparison 
with other characteristic energies. In the two interface models studied here, 
as in the QSOS model studied previously, 4 the value of the action $1 
corresponding to one instanton is practically equal to half of the squared 
width of the surface. This is in agreement with the semiphenomenological 
statement by Fisher and Weeks 3 concerning the width of the interface and 
the smoothness of the face. It is also important that instantons interact like 
charges (and not like, say, dipoles) and so can screen any distortion of the 
field n. 

In the limit of an almost absolutely smooth surface (large J)  we again 
can use perturbation theory, which enables us to show that the excitation 
spectrum has a gap. 

A different form of the spectrum for different magnitudes of J indicates 
that the model displays a phase transition. This phase transition also 
manifests itself in the different behavior of the equal-time correlation func- 
tion (n~nl) for I r j -  rl[~oo. 

For J >> A (when perturbation theory is applicable) it is more convenient 
to calculate this correlation function directly (without performing the Four- 
ier transformation). In this case it decays exponentially. In the opposite 
limit of small J (when we can use the dilute instanton gas~approximation) 
we must calculate (njnt) with the help of Eqs. (10) and (23). Thus a power 
decay law is obtained. The origin of such behavior is accounted for by 
gapless excitation and the corresponding branching points in the 
denominator of  G( k, oJ ). 

The equal-time correlation function can also be found for nonzero 
temperature. It is easy to show that the power decay law becomes an- 
exponential law. The coefficient in the exponent turns out to be proportional 
to the temperature (in the previously gapless region). This becomes clear 
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if one considers different terms of the sum over Wl. Thus the difference 
between the phases vanishes at T ~  0. 

So it seems that the phase transition considered above exists (as a 
singular point of  the free energy) only at zero temperature. 

5. C O N C L U S I O N  

For all quantum models considered the faces of  the crystal are smooth 
at zero temperature.  The quantum effects do not change the temperature 
of the roughening transition considerably compared to its classical value. 
However,  they can strongly increase the correlation radius ~ of the zero- 
frequency correlation function. This is of  great importance for the experi- 
mer ta l  observation of faceting. 2'17-2° 

The size e of a flat facet on the crystal surface is determined by the 
energy of  the step on that facet. 21 The energy of the step is inversely 
proport ional  to the correlation radius. 4'z2'23 Combining all these results, we 
get e = JL/~,~d ~ dL/~, where ~ is the effective surface tension and L is 
the size of  the crystal. Since the observation of a flat facet is impossible if 
its size is smaller than the correlation length, we obtain the condition 
~:<< ~* ~ (dL) 1/2. For the typical values 2° L~- 10 -1 cm and d ~ 10 -8 cm we 
get ~:*~ 10-4-10 -5 cm. Due to the exponential grown of ~: with decreasing 
J, this may be a serious constraint for faces with large and even moderate  
Miller indices, since J is rapidly decreasing. 

The freezing-melting waves were first proposed by Andreev and Par- 
shin ~ as specific excitations for quantum rough faces. Assuming that the 
model of  Section 4 is valid for real 4He, we still have two possibilities for 
observing freezing-melting waves even if all the faces are smooth at zero 
temperature. The first (trivial) one is the observation of such waves on a 
thermally rough interface (for T >  TR). The second (and more interesting) 
one is the observation of waves on a smooth interface, which can exist in 
the case of  small J and large A. This second type of wave has a different 
type of spectrum for small k. 

In the case of  a quantum crystal existing at zero pressure or in the case 
when there is only quantum hopping of atoms along the interface, apart  
from the classical roughening we have a transition to the superfluid surface 
phase - - a  phase with nondissipative surface mass current. It is interesting 
that this transition does not depend on the atomic statistics. In that case 
gapless excitations of  the surface occur with an acoustical type of spectrum. 
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