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Abstract. The ordered states of a planar antiferromagnet with a triangular lattice are 
investigated in the presence of a magnetic field. The spin wave free energy is taken into 
account and proves to be important for determining the properties of the system. The phase 
diagram is constructed. It contains four different phases with rigorous long-range order. 
Three of them are characterised by different configurations of mean magnetic moments for 
the three sublattices. The existence of one more non-trivial phase with an algebraic decay 
of the correlation functions is very probable. 

1. Introduction 

In the exchange approximation a planar antiferromagnet can be described with the 
Hamiltonian: 

H = J mi - mi! = J cos(qj - qj,) (1) 
(11')  (ii') 

where mi = (cos qj, sin qj) are unit planar vectors defined on lattice sites and the 
summation is performed over pairs of nearest neighbours. In the case of a flat triangular 
lattice (and this is the case we are interested in) the ground state consists of three 
sublattices. The magnetic moments (spins) mi belonging to different sublattices form the 
angles 120" with respect to each other: 

@* = @ I  ? 120" = @ I  7 120". (2) 
Here q$ ( I  = 1 ,2 ,3 )  denote the common values of qi in each of the three sublattices. In 
addition to continuous degeneracy caused by the invariance of the Hamiltonian with 
respect to homogeneous rotation of all spins the ground state also possesses two-fold 
discrete degeneracy (upper and lower signs in (2)). The order parameter degeneracy 
space R is, accordingly, a pair of circumferences: 

R = Z 2  x SI. 
It proves convenient to describe this additional (discrete) degeneracy by introducing 

the helicity (vorticity) U, of each triangular plaquette r,: 
U, = (1/2n) {Vi - q y  - n}. 

(ii') E r (3) 

0022-3719/86/295927 + 09 $02.50 @ 1986 The Institute of Physics 5927 



S E  Korshunov 

Here the curly brackets imply that the difference qj - qjr - n must be reduced to an 
interval (- n, n). If one neglects the possibility of the strictly ferromagneticconfiguration 
of spins, the helicities U ,  prove to acquire the values .ti only. Our definition of helicity 
(equation (3)) seems to be more adequate than the one used by other authors (see, e.g., 
Lee et a1 1984b) because it excludes the possibility of zero helicity and stresses the king 
character of this variable. 

In the ground state the positive and negative helicities alternate regularly (figure 1). 

-<- 
I/ 

Figure 1. The ground state of the AF X Y  (t)-model in zero magnetic field. 

The two-fold discrete degeneracy corresponds to a simultaneous changing of signs of 
all U,. 

Miyashita and Shiba (1984) studied phase transitions in the antiferromagnetic X Y  
model with a triangular lattice (AF Xy(t) model) by means of a numerical simulation. 
They have shown that the Berezinskii-Kosterlitz-Thouless transition (BKT transition) 
associated with the restoring of the continuous symmetry takes place at slightly lower 
temperature than the Ising-type transition associated with the breaking of anti- 
ferromagnetic ordering in U, (Lee et ai (1984b) failed to discover the difference between 
the temperatures of these transitions). 

In the presence of a magnetic field the Hamiltonian of the AFXY(t) model should be 
rewritten as: 

(4) 

where angles qj are measured from the direction perpendicular to h.  A rather striking 
feature of the AF XY(t) model is that the continuous degeneracy of the ground state is 
retained in the presence of the magnetic field. The minimum of (4) is achieved when the 
conditions: 

H = J 2 mi mil - h - mi = J 2 cos(qj - vi,) - h sin qi 
(ii') i ( i i ' )  1 

cos q51 + cos $2  + cos ($3 = 0 

sin @1 + sin G2 + sin G 3  = h/(3J)  

are fulfilled. These conditions keep one free parameter (see, e.g., Lee et a1 1984b). With 
increasing h up to hCl = 3J the two circumferences of the order parameter degeneracy 
space merge in three points. With further increasing temperature these junctions split 
again crosswise, the order parameter of the degeneracy space becoming only one cir- 
cumference. At h = hc2 = 9J this circumference merges into a point corresponding to 
the configuration with all spins aligned parallel (paramagnetic state). 
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It seems worth mentioning that the continuous degeneracy of the ground state in the 
presence of the magnetic field is accidental (i.e. not caused by any symmetry). It is 
removed with an arbitrary change of the form of the interaction. However, in the case 
of the pure exchange interaction it is retained even when the interaction of more distant 
neighbours is taken into account. 

The phase diagram of the model (4) was investigated by means of a numerical 
simulation (Lee et a1 1984b) and analytically: in a mean-field approximation (Lee et a1 
1984a), by means of constructing the phenomenological Hamiltonians (Lee et a1 1984b) 
and by studying relevant topological excitations (Dotsenko and Uimin 1984, 1985). 
However, it has been overlooked by the authors of these analytical studies that at finite 
temperatures the continuous degeneracy is removed due to the free energy of the spin 
waves. 

In 0 2 of this paper the spin wave free energy is calculated in the simplest (harmonic) 
approximation, which is valid at low temperatures. This free energy proves to be 
dependent on the particular kind of vacuum state. The spin configurations required to 
minimise it are found. In 0 3 disordering due to thermal fluctuations is taken into account 
and the phase diagram of the model (4) is constructed on the basis of the analysis of 0 2. 
Section 4 is devoted to the discussion of the results obtained and of the experimental 
situation. 

Some of the results of this paper have been published previously (Korshunov 1985), 
and similar results have been obtained by Kawamura (1984). 

2. Minimisation of the spin wave free energy 

We would like to calculate the spin wave free energy in the harmonic approximation. In 
order to do this it is convenient to supplement the Hamiltonian (4) with a fictitious kinetic 
energy in the form, say: 

K = ( M / 2 )  @:. 
j 

A variation of the Lagrangian 

L = K - H  

with respect to qj yields the equations of motion, which in the linearised form can be 
written as 
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det 

and we have introduced the Fourier transforms for the deviations 6 q j  of qj from their 
equilibrium values separately for each of the three sublattices (denoted by the indices 1, 
2,3).  The numbering of the sublattices and basis vectors el (el + e2 + e3 = 0) are shown 
in figure 2. The particular kind of ground state is characterised by the $,-the equilibrium 
values of qj in each of the three sublattices. The are assumed to satisfy ( 5 ) .  The 
equation for the eigen-frequencies of small oscillations can be easily obtained as the 

1 - Q M o 2 / J  UCOS($I - $2) U* cos($1 - $3) 
U* - $ 1 )  1 - 4 M 0 2 / J  U C O S ( $ ~  - G3) = 0. (7)  
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Figure 2. The numbering of sublattices and the basis vectors used in equations (6) 
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The attentive reader can get an impression that at finite temperatures performing a 
quadric expansion on the background of the fixed ground state produces a result that is 
inconsistent due to the absence of a rigorous long-range order in rp. We want to stress 
that when the anisotropy found is self-consistently taken into account a gap appears in 
the gapless mode. The long-range order becomes rigorous. It seems worth remembering 
that in two-dimensional systems with a continuous Abelian symmetry an arbitrary small 
anisotropy proves to be relevant if the temperature is small in comparison with the 
constant in the gradient energy term (Pokrovsky and Uimin 1973a, b, JosC et a1 1977). 

Let us now consider what kind of states have the minimal free energy of the spin 
waves. The configurations of spins in different sublattices maximising S( q52, r#J3)  with 
constraints (5) being taken into account are shown in figure 3. For h < hcl the three 

t 

Figure 3. Configuration of spins of the three sublattices with the minimal spin wave free 
energy: ( a ) ,  0 < h < hcl; (b) ,  h = hCl; ( c ) ,  h,, < h < hc2; (d ) ,  in the case of the opposite sign 
of the anisotropic part of the free energy. 

sublattices are non-equivalent. On one of them the spins are antiparallel to the field, 
and on the two others they have the perpendicular-to-field components of opposite signs 
(figure 3(a)). This state is six-fold degenerate in accordance with a number of possible 
permutations of non-equivalent sublattices. 

With increasing h the angle between the spins, which are not antiparallel to the 
field, diminishes, and at h = hcl vanishes (figure 3(b)). Two of the sublattices become 
equivalent, the spins on them being parallel to the field. The degeneracy multiplicity of 
this state is equal to three. 

For hcl < h < hc2 the equivalence of two of the sublattices is retained, but the sym- 
metry in the direction perpendicular to the field becomes broken (figure 3(c) ) .  That 
leads to the degeneracy multiplicity being increased up to six, as for 0 < h < hcl. The 
anharmonicities being taken into account, the magnetic moment in this state is not 
parallel to the field (at finite temperatures). 

Thus we have considered which states are preferred by the spin wave free energy at 
the lowest temperatures. 



5932 S E  Korshunou 

3. Phase diagram 

For magnetic fields only slightly exceeding hCl the first phase transition to occur with 
increasing temperature should be the Ising-type transition restoring the broken sym- 
metry in the perpendicular-to-field direction. This can be explained by the small value 
of the domain wall free energy for the states that differ only by the signs of the per- 
pendicular-to-field components of the magnetic moment. The transition considered 
restores the equivalence of two such states, being thus of the Ising type. At higher 
temperatures the degeneracy multiplicity is equal to three. The temperature of this 
transition should decrease with decreasing h (like the corresponding domain wall free 
energy) and at h = hcl should become zero. 

Analogously, for the fields slightly lower than hcl the domain wall with minimal 
free energy also separates the states differing by the sign of the perpendicular-to-field 
component of the magnetic moments of different sublattices. In this case however both 
states are symmetric in the perpendicular-to-field direction. They can be transformed 
into each other by the permutation of the two sublattices. With an increase in temperature 
the equivalence of these states should be restored. This transition is also of the Ising 
type, and the temperature of the transition should also be zero at the point h = hcl. 

In the phase diagram of the model (4) obtained by Lee er a1 (1984b) by means of 
numerical simulation both of these lines are present. The analysis carried out in the 
previous section allows one easily to identify the three ordered phases discovered by 
these authors. In each of them the mean values of the magnetic moments for each of the 
three sublattices should be directed as figure 3(a), 3(b) or 3(c) shows. 

The phase diagram resulting from our analyses with the results of numerical simu- 
lations of Miyashita and Shiba (1984) and of Lee et a1 (1984b) being taken into account 
is shown in figure 4 in coordinates T/J ,  h/J. On the curves DB and DC the Ising-type 
transitions described above take place. 

The phase b can be treated as a commensurate crystal d3 X d3 of spins antiparallel 
to the field on the background of the parallel ones (we are speaking of the mean values 
of the spins). The exact solution of the hard hexagon model (Baxter 1980) shows that 
the melting of such structure (line BC) should proceed with the same critical exponents 
as the phase transition of the three-state Potts model. An assumption however was put 
forward (Huse and Fisher 1984) that the breaking of the chiral symmetry (i.e. the 
dependence of the domain wall free energy both on the particular states that are 
separated and on the orientation of the wall) may lead to a change in the universality 
class. 

The line AB corresponds to the phase transition in the Z 6  model with chiral 
asymmetry, so the type of transition cannot be predicted unambiguously either. For h 
close to hC2 the values of the satisfying (5) in the leading order can be expressed 
parametrically as: 

G 2  = b sin( 8 + 120") 

where b = 2[(hc2 - h)/hc2]'/* (Dotsenko and Uimin 1985), so the original~FXY(t) model 
can be approximated by the ordinary XYmodel for variable 8. When the spin wave free 
energy is taken into account the effective sixth-order anisotropy field emerges for 
variable 8. Thus the splitting of the phase transition into two seems very probable, the 
intermediate phase being characterised by the algebraic decay of the correlation function 
for 8 (just as it should be in the case of the ordinary six-state clock model, see JosC er al 

= bsin 8 G3 = b sin(8 - 120") 
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Figure 4. Phase diagram of the AF XY(t) model in an external magnetic field. In phases a, b 
and c the mean magnetic moments of different sublattices form configurations similar to 
those shown in figures 3(a) ,  3(b) and 3(c)  respectively. In phase d only the long-range order 
with respect to helicities is retained. Phase p is paramagnetic. 

1977). So the curve BA (or at least part of it) should split into two curves joining in the 
point A. 

Let us now consider the form of the phase diagram for the low fields. The numerical 
simulation of Miyashita and Shiba (1984) shows that in zero field the BKT transition 
precedes that of the Ising type. This Ising-type transition restores the equivalence 
between the states differing in signs of the helicities in each elementary cell and therefore 
is essentially the same transition as the transition on the line DC which, so it seems, 
should terminate at the point C2 of the Ising-type transition in zero field. 

For small fields the influence of the spin wave free energy is equivalent to that of the 
three-fold anisotropy field for a continuous variable. So the point C1 of the BKT 
transition in zero field should not be an isolated singular point but it should serve as an 
end-point for a line of phase transitions between the six-fold-degenerate and two-fold- 
degenerate states (cf JosC et a1 1977). This makes us conclude that one more ordered 
phase should exist (phase d in figure 4). In this phase the mean values of magnetic 
moments are equal for all the sublattices, but the ‘antiferromagnetic’ order with respect 
to the helicities is retained. The point of coexistence of four phases (phases a, b, d and 
paramagnetic phase p) is likely to split into two triple points (points C and C’ in figure 

The line C’C2 is the line of the Ising-type transitions, and the line C‘C1 that of the 
three-state Potts model transitions. The phase transitions on the line CC’ are likely to 
be of first order, just as in the six-state Potts model (Baxter 1973) or in a six-state cubic 
model (Nienhuis et aZ1983). 

When the interaction of more distant neighbours is taken into account the sequence 
and types of the transitions in zero field can change (Korshunov and Uimin 1986). The 

4). 
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existence of the phase d is possible only if in zero field the BKT transitions take place at 
a lower temperature than that of the Ising type. 

4. Discussion 

In the two previous sections we have studied the phase diagram of the AF XY(t) model 
in an external magnetic field and have found four different ordered phases with rigorous 
long-range order (in one of them-only with respect to helicities). The existence of one 
more non-trivial phase with an algebraic order for the variable seems very probable. 

Our conclusions about the nature of the ordered phases coincide with those of Lee 
et a1 (1984b) with respect to the phase b and contradict them for phases a and c. It is 
claimed by these authors that the configurations of mean magnetic moments in each of 
the three sublattices to be achieved in phases a and c are those that correspond to the 
other sign of the anisotropy energy (i.e. to free energy being minimal for minimal values 
of S). We would like to stress that if such was the case, only one ordered phase would 
exist, with a configuration of spins such as in figure 3(d). The spins in one of the three 
non-equivalent sublattices would be parallel to the field and the angle x would vary 
continuously from 120" to zero with increasing h. The phase diagram would have no 
non-trivial structure at low temperatures. 

The A F m ( t )  model is not of purely academic interest. The triangular lattice is typical 
of the absorbed monolayer forming two-dimensional crystal. It may be expected that 
the dense monolayer of O2 on a graphite substrate (Stephens et a1 1980) or a thin layer 
of the solid O2 (&-phase) will exhibit the peculiar behaviour described in this paper. 

One more physical system that can be described by the AF XY(t) model is the 
layer of Eu intercalated in graphite. The dependence of the magnetic moment on h 
experimentally observed in EuC6 at low temperatures (see Suematsu et a1 (1981) and 
references therein) agrees with the existence of three different ordered phases. The 
corresponding path is shown in the phase diagram (figure 4) by the broken line. 
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