рус Publications
[64] Differential substitutions for non-Abelian equations of KdV type.
V.E. Adler. Ufa Math. J. 13:2 (2021) 107-114.
[63] On matrix Painlevé II equations.
V.E. Adler, V.V. Sokolov. Theoret. Math. Phys. 207:2 (2021) 560-571.
[62] Non-Abelian evolution systems with conservation laws.
V.E. Adler, V.V. Sokolov. Math. Phys. Anal. Geom. 24:1 (2021) 7.
[61] Painlevé type reductions for the non-Abelian Volterra lattices.
V.E. Adler. J. Phys. A: Math. Theor. 54:3 (2021) 035204.
[60] Nonautonomous symmetries of the KdV equation and step-like solutions.
V.E. Adler. J. Nonl. Math. Phys. 27:3 (2020) 478-493.
[59] Some exact solutions of the Volterra lattice.
V.E. Adler, A.B. Shabat. Theoret. Math. Phys. 201:1 (2019) 1442-1456.
[58] Volterra chain and Catalan numbers.
V.E. Adler, A.B. Shabat. JETP Lett. 108:12 (2018) 825-828.
[57] Cartan Matrices in the Toda-Darboux Chain Theory.
A.B. Shabat, V.E. Adler. Theor. Math. Phys. 196:1 (2018) 957-964.
[56] Integrable Seven-Point Discrete Equations and Second-Order Evolution Chains.
V.E. Adler. Theor. Math. Phys. 195:2 (2018) 513-528.
[55] Integrable Möbius invariant evolutionary lattices of second order.
V.E. Adler. Funct. Anal. Its Appl. 50:4 (2016) 257–267.
[54] Set partitions and integrable hierarchies.
V.E. Adler. Theor. Math. Phys. 187:3 (2016) 842--870.
[53] Integrability test for evolutionary lattice equations of higher order.
V.E. Adler. J. of Symb. Comput. 74 (2016) 125-139.
[52] On the combinatorics of several integrable hierarchies.
V.E. Adler. J. Phys. A: Math. Theor. 48 (2015) 265203.
[51] Necessary integrability conditions for evolutionary lattice equations.
V.E. Adler. Theor. Math. Phys. 181:2 (2014) 1367-1382.
[50] On discrete 2D integrable equations of higher order.
V.E. Adler, V.V. Postnikov. J. Phys. A: Math. Theor. 47:4 (2014) 045206.
[49] Toward a theory of integrable hyperbolic equations of third order.
V.E. Adler, A.B. Shabat. J. Phys. A: Math. Theor. 45:39 (2012) 395207.
[48] Quantum tops as examples of commuting differential operators.
V.E. Adler, V.G. Marikhin, A.B. Shabat. Theor. Math. Phys. 172:3 (2012) 1187-1205.
[47] Differential-difference equations associated with the fractional Lax operators.
V.E. Adler, V.V. Postnikov. J. Phys. A: Math. Theor. 44:41 (2011) 415203.
[46] Linear problems and Bäcklund transformations for the Hirota-Ohta system.
V.E. Adler, V.V. Postnikov. Physics Letters A 375:3 (2011) 468-473.
[45] Classification of integrable discrete equations of octahedron type.
V.E. Adler, A.I. Bobenko, Yu.B. Suris. Int. Math. Res. Notices 2012:8 (2012) 1822-1889.
[44] On a discrete analog of the Tzitzeica equation.
V.E. Adler. arXiv:1103.5139.
[43] Classification of discrete integrable equations. (in Russian)
V.E. Adler.   Dr. Sc. dissertation, ITP, Chernogolovka, 2010.   Summary
[42] Integrable discrete nets in Grassmannians.
V.E. Adler, A.I. Bobenko, Yu.B. Suris. Lett. Math. Phys. 89:2 (2009) 131-139.
[41] Discrete nonlinear hyperbolic equations. Classification of integrable cases.
V.E. Adler, A.I. Bobenko, Yu.B. Suris. Funct. Anal. and Appl. 43:1 (2009) 3-17.
[40] The tangential map and associated integrable equations.
V.E. Adler. J. Phys. A: Math. Theor. 42:33 (2009) 332004.
[39] On vector analogs of the modified Volterra lattice.
V.E. Adler, V.V. Postnikov. J. Phys. A: Math. Theor. 41:45 (2008) 455203.
[38] Classification of integrable Volterra-type lattices on the sphere: isotropic case.
V.E. Adler. J. Phys. A: Math. Theor. 41:14 (2008) 145201.
[37] Model equation of the theory of solitons.
V.E. Adler, A.B. Shabat. Theor. Math. Phys. 153:1 (2007) 1373-1387.
[36] On a class of third order mappings with two rational invariants.
V.E. Adler. arXiv:nlin/0606056v1.
[35] On the one class of hyperbolic systems.
V.E. Adler, A.B. Shabat. SIGMA 2 (2006) 093.
[34] Dressing chain for the acoustic spectral problem.
V.E. Adler, A.B. Shabat. Theor. Math. Phys. 149:1 (2006) 1324-1337.
[33] Some incidence theorems and integrable discrete equations.
V.E. Adler. Discrete & Comput. Geom. 36:3 (2006) 489-498.
[32] Q4: Integrable master equation related to an elliptic curve.
V.E. Adler, Yu.B. Suris. Int. Math. Res. Notices 2004:47 (2004) 2523-2553.
[31] Geometry of Yang-Baxter maps: pencils of conics and quadrirational mappings.
V.E. Adler, A.I. Bobenko, Yu.B. Suris. Comm. Anal. and Geom. 12:5 (2004) 967-1007.
[30] Cauchy problem for integrable discrete equations on quad-graphs.
V.E. Adler, A.P. Veselov. Acta Appl. Math. 84:2 (2004) 237–262.
[29] Classification of integrable equations on quad-graphs. The consistency approach.
V.E. Adler, A.I. Bobenko, Yu.B. Suris. Comm. Math. Phys. 233:3 (2003) 513-543.
[28] Canonical Bäcklund transformations and Lagrangian chains.
V.E. Adler, V.G. Marikhin, A.B. Shabat. Theor. Math. Phys. 129:2 (2001) 1448-1465.
[27] Discrete equations on planar graphs.
V.E. Adler. J. Phys. A: Math. Gen. 34 (2001) 10453-10460.
[26] Symmetry approach to the integrability problem.
V.E. Adler, A.B. Shabat, R.I. Yamilov. Theor. Math. Phys. 125:3 (2000) 1603-1661.
[25] On the relation between multifield and multidimensional integrable equations.
V.E. Adler. arXiv:solv-int/0011039.
[24] Discretizations of the Landau-Lifshitz equation.
V.E. Adler. Theor. Math. Phys. 124:1 (2000) 897-908.
[23] On the structure of the Bäcklund transformations for the relativistic lattices.
V.E. Adler. J. of Nonl. Math. Phys. 7:1 (2000) 34-56.
[22] Legendre transformations on a triangular lattice.
V.E. Adler. Funct. Anal. Appl. 34:1 (2000) 1-9.
[21] Group analysis of differential equations. (in Russian)
V.E.Adler, I.T. Habibullin, I.Yu. Cherdantsev. Ufa State Aviation Tech. Univ., 1999, 64 pp.
[20] Discrete analogues of the Liouville equation.
V.E. Adler, S.Ya. Startsev. Theor. Math. Phys. 121:2 (1999) 1484-1496.
[19] Multi-component Volterra and Toda type equations.
V.E. Adler, S.I. Svinolupov, R.I. Yamilov. Phys. Lett A 254:1-2 (1999) 24-36.
[18] First integrals of generalized Toda chains.
V.E. Adler, A.B. Shabat. Theor. Math. Phys. 115:3 (1998) 639-646.
[17] Bäcklund transformation for the Krichever-Novikov equation.
V.E. Adler. Int. Math. Res. Notices 1998:1 (1998) 1-4.
[16] Generalized Legendre transformations.
V.E. Adler, A.B. Shabat. Theor. Math. Phys. 112:2 (1997) 935-948.
[15] On a class of Toda chains.
V.E. Adler, A.B. Shabat. Theor. Math. Phys. 111:3 (1997) 647-657.
[14] Boundary conditions for integrable equations.
V.E. Adler, B. Gürel, M. Gürses, I.T. Habibullin. J. Phys. A: Math. Gen. 30:10 (1997) 3505-3513.
[13] Boundary conditions for integrable lattices.
V.E. Adler, I.T. Habibullin. Funct. Anal. Appl. 31:2 (1997) 75-85.
[12] Boundary value problem for the KDV equation on a half-line.
V.E. Adler, I.T. Habibullin, A.B. Shabat. Theor. Math. Phys. 110:1 (1997) 78-90.
[11] On the rational solutions of the Shabat equation.
V.E. Adler. Proc. of Int. Workshop `Nonlinear Physics', pp.53-61, World Scientific, 1996.
[10] Integrable boundary conditions for the Toda lattice.
V.E. Adler, I.T. Habibullin. J. Phys. A: Math. Gen. 28 (1995) 6717-6729.
[9] Integrable deformations of a polygon.
V.E. Adler. Physica D 87:1-4 (1995) 52-57.
[8] Explicit auto-transformations of integrable chains.
V.E. Adler, R.I. Yamilov. J. Phys. A: Math. Gen. 27 (1994) 477-492.
[7] Discrete symmetries of nonlinear lattices. (in Russian)
V.E. Adler. PhD thesis, Inst. of Math. of the Ufa Sci. Center, 1994.
[6] A modification of Crum's method.
V.E. Adler. Theor. Math. Phys. 101:3 (1994) 1381-1386.
[5] Nonlinear superposition principle for the Jordan NLS equation.
V.E. Adler. Phys. Lett A 190:1 (1994) 53-58.
[4] Nonlinear chains and Painlevé equations.
V.E. Adler. Physica D 73:4 (1994) 335-351.
[3] Recuttings of polygon.
V.E. Adler. Funct. Anal. Appl. 27:2 (1993) 141-143.
[2] Lie-algebraic approach to nonlocal symmetries of integrable systems.
V.E. Adler. Theor. Math. Phys. 89:3 (1991) 1239-1248.
[1]    On the N-soliton solution of the Korteweg-de Vries equation. (in Russian)
V.E. Adler. In: `Asymptotic methods in the problems of mathematical physics', pp.3-8, Ufa Inst. of Mathematics, 1989.

V.E. Adler / Last updated: November 13, 2018