[64] | Differential substitutions for non-Abelian equations of KdV type. V.E. Adler. Ufa Math. J. 13:2 (2021) 107-114. |
[63] | On matrix Painlevé II equations. V.E. Adler, V.V. Sokolov. Theoret. Math. Phys. 207:2 (2021) 560-571. |
[62] | Non-Abelian evolution systems with conservation laws. V.E. Adler, V.V. Sokolov. Math. Phys. Anal. Geom. 24:1 (2021) 7. |
[61] | Painlevé type reductions for the non-Abelian Volterra lattices. V.E. Adler. J. Phys. A: Math. Theor. 54:3 (2021) 035204. |
[60] | Nonautonomous symmetries of the KdV equation and step-like solutions. V.E. Adler. J. Nonl. Math. Phys. 27:3 (2020) 478-493. |
[59] | Some exact solutions of the Volterra lattice. V.E. Adler, A.B. Shabat. Theoret. Math. Phys. 201:1 (2019) 1442-1456. |
[58] | Volterra chain and Catalan numbers. V.E. Adler, A.B. Shabat. JETP Lett. 108:12 (2018) 825-828. |
[57] | Cartan Matrices in the Toda-Darboux Chain Theory. A.B. Shabat, V.E. Adler. Theor. Math. Phys. 196:1 (2018) 957-964. |
[56] | Integrable Seven-Point Discrete Equations and Second-Order Evolution Chains. V.E. Adler. Theor. Math. Phys. 195:2 (2018) 513-528. |
[55] | Integrable Möbius invariant evolutionary lattices of second order. V.E. Adler. Funct. Anal. Its Appl. 50:4 (2016) 257–267. |
[54] | Set partitions and integrable hierarchies. V.E. Adler. Theor. Math. Phys. 187:3 (2016) 842--870. |
[53] | Integrability test for evolutionary lattice equations of higher order. V.E. Adler. J. of Symb. Comput. 74 (2016) 125-139. |
[52] | On the combinatorics of several integrable hierarchies. V.E. Adler. J. Phys. A: Math. Theor. 48 (2015) 265203. |
[51] | Necessary integrability conditions for evolutionary lattice equations. V.E. Adler. Theor. Math. Phys. 181:2 (2014) 1367-1382. |
[50] | On discrete 2D integrable equations of higher order. V.E. Adler, V.V. Postnikov. J. Phys. A: Math. Theor. 47:4 (2014) 045206. |
[49] | Toward a theory of integrable hyperbolic equations of third order. V.E. Adler, A.B. Shabat. J. Phys. A: Math. Theor. 45:39 (2012) 395207. |
[48] | Quantum tops as examples of commuting differential operators. V.E. Adler, V.G. Marikhin, A.B. Shabat. Theor. Math. Phys. 172:3 (2012) 1187-1205. |
[47] | Differential-difference equations associated with the fractional Lax operators. V.E. Adler, V.V. Postnikov. J. Phys. A: Math. Theor. 44:41 (2011) 415203. |
[46] | Linear problems and Bäcklund transformations for the Hirota-Ohta system. V.E. Adler, V.V. Postnikov. Physics Letters A 375:3 (2011) 468-473. |
[45] | Classification of integrable discrete equations of octahedron type. V.E. Adler, A.I. Bobenko, Yu.B. Suris. Int. Math. Res. Notices 2012:8 (2012) 1822-1889. |
[44] | On a discrete analog of the Tzitzeica equation. V.E. Adler. arXiv:1103.5139. |
[43] | Classification of discrete integrable equations. (in Russian) V.E. Adler. Dr. Sc. dissertation, ITP, Chernogolovka, 2010. Summary |
[42] | Integrable discrete nets in Grassmannians. V.E. Adler, A.I. Bobenko, Yu.B. Suris. Lett. Math. Phys. 89:2 (2009) 131-139. |
[41] | Discrete nonlinear hyperbolic equations. Classification of integrable cases. V.E. Adler, A.I. Bobenko, Yu.B. Suris. Funct. Anal. and Appl. 43:1 (2009) 3-17. |
[40] | The tangential map and associated integrable equations. V.E. Adler. J. Phys. A: Math. Theor. 42:33 (2009) 332004. |
[39] | On vector analogs of the modified Volterra lattice. V.E. Adler, V.V. Postnikov. J. Phys. A: Math. Theor. 41:45 (2008) 455203. |
[38] | Classification of integrable Volterra-type lattices on the sphere: isotropic case. V.E. Adler. J. Phys. A: Math. Theor. 41:14 (2008) 145201. |
[37] | Model equation of the theory of solitons. V.E. Adler, A.B. Shabat. Theor. Math. Phys. 153:1 (2007) 1373-1387. |
[36] | On a class of third order mappings with two rational invariants. V.E. Adler. arXiv:nlin/0606056v1. |
[35] | On the one class of hyperbolic systems. V.E. Adler, A.B. Shabat. SIGMA 2 (2006) 093. |
[34] | Dressing chain for the acoustic spectral problem. V.E. Adler, A.B. Shabat. Theor. Math. Phys. 149:1 (2006) 1324-1337. |
[33] | Some incidence theorems and integrable discrete equations. V.E. Adler. Discrete & Comput. Geom. 36:3 (2006) 489-498. |
[32] | Q4: Integrable master equation related to an elliptic curve. V.E. Adler, Yu.B. Suris. Int. Math. Res. Notices 2004:47 (2004) 2523-2553. |
[31] | Geometry of Yang-Baxter maps: pencils of conics and quadrirational mappings. V.E. Adler, A.I. Bobenko, Yu.B. Suris. Comm. Anal. and Geom. 12:5 (2004) 967-1007. |
[30] | Cauchy problem for integrable discrete equations on quad-graphs. V.E. Adler, A.P. Veselov. Acta Appl. Math. 84:2 (2004) 237–262. |
[29] | Classification of integrable equations on quad-graphs. The consistency approach. V.E. Adler, A.I. Bobenko, Yu.B. Suris. Comm. Math. Phys. 233:3 (2003) 513-543. |
[28] | Canonical Bäcklund transformations and Lagrangian chains. V.E. Adler, V.G. Marikhin, A.B. Shabat. Theor. Math. Phys. 129:2 (2001) 1448-1465. |
[27] | Discrete equations on planar graphs. V.E. Adler. J. Phys. A: Math. Gen. 34 (2001) 10453-10460. |
[26] | Symmetry approach to the integrability problem. V.E. Adler, A.B. Shabat, R.I. Yamilov. Theor. Math. Phys. 125:3 (2000) 1603-1661. |
[25] | On the relation between multifield and multidimensional integrable equations. V.E. Adler. arXiv:solv-int/0011039. |
[24] | Discretizations of the Landau-Lifshitz equation. V.E. Adler. Theor. Math. Phys. 124:1 (2000) 897-908. |
[23] | On the structure of the Bäcklund transformations for the relativistic lattices. V.E. Adler. J. of Nonl. Math. Phys. 7:1 (2000) 34-56. |
[22] | Legendre transformations on a triangular lattice. V.E. Adler. Funct. Anal. Appl. 34:1 (2000) 1-9. |
[21] | Group analysis of differential equations. (in Russian) V.E.Adler, I.T. Habibullin, I.Yu. Cherdantsev. Ufa State Aviation Tech. Univ., 1999, 64 pp. |
[20] | Discrete analogues of the Liouville equation. V.E. Adler, S.Ya. Startsev. Theor. Math. Phys. 121:2 (1999) 1484-1496. |
[19] | Multi-component Volterra and Toda type equations. V.E. Adler, S.I. Svinolupov, R.I. Yamilov. Phys. Lett A 254:1-2 (1999) 24-36. |
[18] | First integrals of generalized Toda chains. V.E. Adler, A.B. Shabat. Theor. Math. Phys. 115:3 (1998) 639-646. |
[17] | Bäcklund transformation for the Krichever-Novikov equation. V.E. Adler. Int. Math. Res. Notices 1998:1 (1998) 1-4. |
[16] | Generalized Legendre transformations. V.E. Adler, A.B. Shabat. Theor. Math. Phys. 112:2 (1997) 935-948. |
[15] | On a class of Toda chains. V.E. Adler, A.B. Shabat. Theor. Math. Phys. 111:3 (1997) 647-657. |
[14] | Boundary conditions for integrable equations. V.E. Adler, B. Gürel, M. Gürses, I.T. Habibullin. J. Phys. A: Math. Gen. 30:10 (1997) 3505-3513. |
[13] | Boundary conditions for integrable lattices. V.E. Adler, I.T. Habibullin. Funct. Anal. Appl. 31:2 (1997) 75-85. |
[12] | Boundary value problem for the KDV equation on a half-line. V.E. Adler, I.T. Habibullin, A.B. Shabat. Theor. Math. Phys. 110:1 (1997) 78-90. |
[11] | On the rational solutions of the Shabat equation. V.E. Adler. Proc. of Int. Workshop `Nonlinear Physics', pp.53-61, World Scientific, 1996. |
[10] | Integrable boundary conditions for the Toda lattice. V.E. Adler, I.T. Habibullin. J. Phys. A: Math. Gen. 28 (1995) 6717-6729. |
[9] | Integrable deformations of a polygon. V.E. Adler. Physica D 87:1-4 (1995) 52-57. |
[8] | Explicit auto-transformations of integrable chains. V.E. Adler, R.I. Yamilov. J. Phys. A: Math. Gen. 27 (1994) 477-492. |
[7] | Discrete symmetries of nonlinear lattices. (in Russian) V.E. Adler. PhD thesis, Inst. of Math. of the Ufa Sci. Center, 1994. |
[6] | A modification of Crum's method. V.E. Adler. Theor. Math. Phys. 101:3 (1994) 1381-1386. |
[5] | Nonlinear superposition principle for the Jordan NLS equation. V.E. Adler. Phys. Lett A 190:1 (1994) 53-58. |
[4] | Nonlinear chains and Painlevé equations. V.E. Adler. Physica D 73:4 (1994) 335-351. |
[3] | Recuttings of polygon. V.E. Adler. Funct. Anal. Appl. 27:2 (1993) 141-143. |
[2] | Lie-algebraic approach to nonlocal symmetries of integrable systems. V.E. Adler. Theor. Math. Phys. 89:3 (1991) 1239-1248. |
[1] | On the N-soliton solution of the Korteweg-de Vries equation. (in Russian) V.E. Adler. In: `Asymptotic methods in the problems of mathematical physics', pp.3-8, Ufa Inst. of Mathematics, 1989. |