Grinevich Piotr Georgievich
Position:
leading scientific researcher
PhD degree:
December 1985, Moscow State University,
Holomorphic bundles and commuting matrix differential operators.
PhD scientific advisor:
professor Sergei Petrovich Novikov
Doctor of Science degree:
June 1999.
Scattering transform for the two-dinemsional Schrodinger operator
at one energy and related integrable equations of mathematical physics.
First page (in Russian)
Dissertation text (in Russian)
Scientific interests:
To be added later.
Main results:
To be added later.
List of Publications:
List of Publications (Russian):
Curriculum vitae:
Curriculum vitae (Russian):
Lectures (texts in Russian):
Elements of soliton theory. Fall 1999 (Independent University of Moscow.)
Lecture 1.
Lecture 2.
Lecture 3.
Lecture 4.
Lecture 5.
Lecture 6.
Lecture 7.
Lecture 8.
Recommended literature.
Maple example.
Elements of soliton theory. Fall 2000 (Independent University of Moscow.)
Program of the course.
Lecture 2.
Lecture 3.
Introduction to the theory of integrable systems. Fall 2001 (Institute for Natural Sciences and Ecology.)
Lecture 1.
Lecture 2.
Lecture 3.
Lecture 4.
Lecture 5.
Recommended literature.
Exam questions.
Introduction to the theory of integrable systems. Fall 2002 (Institute for Natural Sciences and Ecology.)
Lecture 1.
Lecture 2.
Lecture 3.
Recommended literature.
Introduction to the theory of integrable systems. Spring 2005 (Institute for Natural Sciences and Ecology.)
Program.
Introduction to the theory of integrable systems. Spring 2006 (Institute for Natural Sciences and Ecology.)
Program
Ps file
|
Pdf file
Introduction to the theory of integrable systems. Spring 2008 (MPTI)
Program
Ps file
|
Pdf file
Problems
Ps file
|
Pdf file
Introduction to the theory of integrable systems. Spring 2009 (MPTI)
Program
Ps file
|
Pdf file
Problems
Ps file
|
Pdf file
Modern Geometry. Spring 2008 (MPTI)
Program
Ps file
|
Pdf file
Modern Geometry. Spring 2009 (MPTI)
Program
Ps file
|
Pdf file
Problems
Ps file
|
Pdf file
Modern Geometry. Spring 2010 (MPTI)
Program
Pdf file
Problems
Pdf file
Modern Geometry. Spring 2014 (MPTI)
Problems - lecture 12.02.2014
Problems - lecture 19.02.2014
Problems - lecture 26.02.2014
Problems - lecture 05.03.2014
Problems - lecture 12.03.2014
Problems - lecture 19.03.2014
Problems - lecture 26.03.2014
Problems - lecture 02.04.2014
Problems - lecture 09.04.2014
Problems - lecture 16.04.2014
Modern Geometry. Spring 2015 (MPTI)
Problems - lecture 11.02.2015
Problems - lecture 18.02.2015
Problems - lecture 25.02.2015
Problems - lecture 04.03.2015
Problems - lecture 11.03.2015
Problems - lecture 18.03.2015
Problems - lecture 25.03.2015
Problems - lecture 01.04.2015
Problems - lecture 08.04.2015
Problems - lecture 15.04.2015
Modern Geometry. Spring 2016 (MPTI)
Problems - lecture 11.02.2016
Problems - lecture 18.02.2016
Problems - lecture 25.02.2016
Problems - lecture 03.03.2016
Problems - lecture 10.03.2016
Problems - lecture 17.03.2016
Problems - lecture 24.03.2016
Problems - lecture 31.03.2016
Problems - lecture 07.04.2016
Problems - lecture 21.04.2016
Problems - lecture 28.04.2016
Problems - lecture 05.05.2016
Problems - lecture 12.05.2016
Modern Geometry. Spring 2017 (MPTI)
Problems - lecture 16.02.2016
Problems - lecture 02.03.2016
Problems - lecture 09.03.2016
Problems - lecture 16.03.2016
Problems - lecture 23.03.2016
Problems - lecture 30.03.2016
Problems - lecture 06.04.2016
Problems - lecture 13.04.2016
Applied problems of geometry. Fall 2004 (Moscow State University.)
Remarks to lecture 1.
Program.
Applied problems of geometry. Spring 2005 (Moscow State University.)
Program.
Applied problems of geometry. Spring 2011 (Moscow State University.)
Problems.
Applied problems of geometry. Spring 2013 (Moscow State University.)
Program.
Problems.
Applied problems of geometry. Spring 2018 (Moscow State University.)
Program.
Problems.
Differential geometry - group 2008. Spring 2013 (Moscow State University.)
Zachet 1.
Introduction to Hamiltonian mechanics. Fall 2004 (Independent University of Moscow.)
Lecture 1.
Lecture 2.
Lecture 3.
Lecture 4.
Lecture 5.
Lecture 7.
Lectures 9+10.
Lectures 1+11.
Program.
Elements of the finite-gap integration theory. Fall 2009 (Independent University of Moscow.)
List of problems 1.
Other matherials
Action-Angle variables.
Analytic geometry. Fall 2005 (Moscow State University.)
Colloquium questions
Ps file
|
Pdf file.
Program
Ps file
|
Pdf file.
Аналитическая геометрия. Весна 2017. (МГУ)
Результаты зачета
Прикладные проблемы геометрии. Весна 2020. (МГУ)
Лекция 18 марта 2020 г.
Лекция 25 марта 2020 г.
Задачи к зачету.
Римановы поверхности. Осень 2024. (МГУ)
Программа курса.
Задачи к зачету.
E-Mail:
Official address:
L.D.Landau Institute for Theoretical Physics RAS, prospekt Akademika Semenova 1a, Chernogolovka, Moscow Region, 142432, RUSSIA.
Mailing address:
L.D.Landau Institute for Theoretical Physics RAS, Kosygina 2, Moscow, 119334, RUSSIA.